Double Integrals in Polar Coordinates

Download Report

Transcript Double Integrals in Polar Coordinates

Double Integrals in Polar
Coordinates
Double Integrals in Polar Coordinates
Recall: Polar Coordinates:
π‘₯ = π‘Ÿ cos πœƒ
π‘Ÿ2 = π‘₯2 + 𝑦2
𝑦 = π‘Ÿ sin πœƒ
tan πœƒ =
𝑦
π‘₯
Sometimes equations and regions are expressed more simply in polar rather
than rectangular coordinates.
For instance, the circle π‘₯ 2 + 𝑦 2 = 5 can be expressed in polar
coordinates as π‘Ÿ = 5.
Double Integrals in Polar Coordinates
The basic region in polar coordinates is the β€œPolar Rectangle”:
𝑅 = (π‘Ÿ, πœƒ) π‘Ž ≀ π‘Ÿ ≀ 𝑏, 𝛼 ≀ πœƒ ≀ 𝛽
where 𝛽 βˆ’ 𝛼 ≀ 2πœ‹
Goal: Compute the double integral  f ( x , y ) dA where R is a polar rectangle.
R
Divide the interval [π‘Ž, 𝑏] into m subinterval [π‘Ÿπ‘– , π‘Ÿπ‘–+1 ] with length βˆ†π‘Ÿ
Divide the interval [𝛼, 𝛽] into n subinterval [πœƒπ‘— , πœƒπ‘—+1 ] with length βˆ†πœƒ
The circles π‘Ÿ = π‘Ÿπ‘– and the rays πœƒ = πœƒπ‘— divide R into small polar rectangles
of area βˆ†π΄π‘–π‘—
Double Integrals in Polar Coordinates
Let  ri , j οƒΆοƒ· be the center of the polar rectangle 𝑅𝑖𝑗.

οƒΈ
1
2
Recall that the area of a sector of a circle of radius r and central angle πœƒ is π‘Ÿ 2 πœƒ
We will compute the area βˆ†π΄π‘–π‘— by subtracting the area of the sector with
central angle βˆ†πœƒ and radius π‘Ÿπ‘– from the area of the sector with the same
central angle and radius π‘Ÿπ‘–+1 .
2
2
1
1
 Aij ο€½  ri 1    ο€­  ri   
2
ο€½
ο€½
2
1 2
ri 1 ο€­ ri2   

2
ri 1  ri
 ri 1 ο€­ ri   
2
ο€½ ri  r  
The rectangular coordinates of the center of 𝑅𝑖𝑗 are
( ri cos  j , ri sin  j )
Therefore a typical Riemann Sum will be
m
n
οƒ₯οƒ₯
i ο€½1 j ο€½1
f ( ri cos  j , ri sin  j )  Ai j ο€½
m
n
οƒ₯οƒ₯
i ο€½1 j ο€½1
f ( ri cos  j , ri sin  j ) ri  r  
Double Integrals in Polar Coordinates
Taking the limit as m and n approach infinity, gives the following important
result:
Change to Polar Coordinates in a Double Integral:
If f is continuous on a polar rectangle 𝑅 = (π‘Ÿ, πœƒ) π‘Ž ≀ π‘Ÿ ≀ 𝑏, 𝛼 ≀ πœƒ ≀ 𝛽
with 𝛽 βˆ’ 𝛼 ≀ 2πœ‹, then

f ( x , y )d A ο€½
R

b
  a
f ( r cos  , r sin  ) r d rd 
The formula above says that, in order to change the integral from x, y to r, ΞΈ
we need to substitute π‘₯ = π‘Ÿ cos πœƒ, 𝑦 = π‘Ÿ sin πœƒ and 𝑑𝐴 = π‘Ÿπ‘‘πœƒπ‘‘π‘Ÿ, and use the
appropriate limits of integration for r and ΞΈ.
Do not forget the additional factor r in the formula.
 1d A
Note 1: A rea of R =
R
rectan gu lar
ο€½
 rd rd 
R
p olar
Note 2: The limits on r may depend on ΞΈ:

R
f ( x , y )d A ο€½

g ( )
  g1 ( )
2
f ( r cos  , r sin  ) r d rd 
Double Integrals in Polar Coordinates- Example 1
Sketch the region of integration and evaluate the integral by changing
to polar coordinates.
2
4ο€­ x2
 ο€­ 2 0
1
dydx
x2  y2  2
The region is bounded below by y = 0 (the x-axis) and above by 𝑦 =
4 βˆ’ π‘₯ 2 (the top half of a circle of radius 2)
π‘Ÿ=2
πœƒ=0
πœƒ=πœ‹
π‘Ÿ=0
2 
0 0
1
rd  d r ο€½
2
r  2 dA
2
0
In polar coordinates, the region is
bounded by
0ο‚£rο‚£2
0 
Since π‘₯ 2 + 𝑦 2 = π‘Ÿ 2 , the integral in
polar coordinates is
r  
 dr ο€½ 
2
οƒͺ  0

r 2
2
0
2
r

2
οƒΉ
d r ο€½ ln( r  2)
2
 0
2
r 2
ο€½

2
 ln(6) ο€­ ln(2)  ο‚» 0.55
Double Integrals in Polar Coordinates - Example 2
Use polar coordinates to find the volume of the solid below 𝑧 = 9 and above
𝑧 = π‘₯ 2 + 𝑦 2 in the first octant.
The two surfaces intersect
along a curve C:
0ο‚£ xο‚£3
x2  y2 ο€½ 9
This quarter of a circle of radius 3
is the projection of C on the xy
plane and it is also the boundary
of the region of integration R.
In polar coordinates the
region is described by:
0 ο‚£ r ο‚£ 3, 0 ο‚£  ο‚£
3  /2
V ο€½
 (
R
9
upper
surface
ο€­ ( x2  y2 )
low er
surface
)
dA ο€½
  9 ο€­ r 
2
0
ο€½


πœƒ=
2
rd  dr
0
 9 r ο€­ r  dr
2 0
3
3
ο€½
81

8
πœ‹
2
πœƒ=0
π‘Ÿ=3
Double Integrals in Polar Coordinates – Example 3
Find the volume inside the sphere π‘₯ 2 + 𝑦 2 + 𝑧 2 = 9 and outside the
cylinder π‘₯ 2 + 𝑦 2 = 4.
The region R is bounded by the circles
π‘₯ 2 + 𝑦 2 = 9 and π‘₯ 2 + 𝑦 2 = 4.
In polar coordinates the
circles have equation
π‘Ÿ = 2 and π‘Ÿ = 3.
By symmetry we can
compute 8 times the
volume in the first
octant.
Our region of
integration is then:
The surface is bounded above by
z ο€½
9 ο€­ x  y
2
2

V ο€½ 8  9 ο€­ ( x 2  y 2 ) d A ο€½ 8

R
ο€½8

3
2 2
9ο€­r
2
rdr ο€½ ο€­ 2
3
2
0
5
 /2
0
2  3/2 οƒΉ 5 2 0
u d u ο€½ 2 οƒͺ u οƒΊ ο€½
5  ο‚» 1 5


0
3
3
( u ο€½ 9 ο€­ r , du ο€½ ο€­ 2 rdr )
2
9 ο€­ r 2 rd  dr
Double Integrals over General Regions Example 4
Calculate the volume bounded by 𝑧 = π‘₯ 2 + 𝑦 2 and 𝑧 = 18 βˆ’ π‘₯ 2 βˆ’ 𝑦 2 .
The two surfaces intersect along a curve C.
18 ο€­ x 2 ο€­ y 2 ο€½ x 2  y 2
οƒž
x2  y2 ο€½ 9
The circle of radius 3 is the boundary of
the region of integration R.
0 ο‚£ r ο‚£ 3,
V ο€½
 ( ( 1 8 ο€­ x
R
ο€½
2
) ο€­ ( x 2  y 2 ) ) dA
ο€­ y2
upper surface
3
2
0 0

18 ο€­ 2 r
2

0 ο‚£  ο‚£ 2
low er surface
rd  d r ο€½ 2  1 8 ο€­ 2 r 2  rd r ο€½ 8 1
3
0