MODELLING OF RUNOFF FORMATION PROCESSES FOR THE …

Download Report

Transcript MODELLING OF RUNOFF FORMATION PROCESSES FOR THE …

Experience with modelling of runoff
formation processes at basins of
different scales using data
of representative and experimental
watersheds
Olga Semenova
State Hydrological Institute
St. Petersburg, Russia
Introduction
1. Models need parameters values
2. The problem of heterogeneity
Example: infiltration coefficient of the upper soil layer
Areal extent, m2
Cv
10-3 (filtration tube)
10
10-1 (field filtration device)
1
102 (sprinkling-machine)
0.1
105 (elementary watershed, estimation in inverse way by
observations of precipitation and surface runoff)
0
3. Idealized representative slope
4. The problem of calibration
Objectives:
to demonstrate that using observational data of small jointly
with the appropriate modelling algorithms gives the possibility
to avoid the calibration procedure and transfer estimated
parameters (without change for a given landscape zone) to
other basins, including those with scarce availability of
information.
Main principles of model development
•
Universality (response to PUB challenge)
•
Balance between simple solutions and
adequate description of natural processes
•
Apriori estimation and systematization of
main parameters (without calibration for
any new object)
•
Routine forcing data
Deterministic Modelling Hydrological System
(DMHS or model “Hydrograph”, by Prof. Yu.B. Vinogradov)
Precipitation
Rain Snow
Heat energy
Snow cover
formation
Interception
Heat dynamics
in soil
Heat dynamics
in snow
Snow melt and
water yield
Initial surface
losses
Infiltration and
surface flow
Water dynamics in soil
Slope transformation
of surface flow
Evaporation
Underground flow
Transformation of underground flow
Channel transformation
Runoff at basin outlet
DMHS features
• Distributed
• Calculating interval – 24-hour or less
• Forcing data – precipitation, temperature and humidity
• Output – runoff hydrograph, water balance elements, state variables of soil and
snow cover
DMHS key concepts
• Concept of runoff
formation complexes
• Concept of runoff
elements (see for details
Vinogradov 2003, 2008)
DMHS parameters
•
•
•
•
•
Soil properties
Vegetation cover properties
Slope surface
Underground water
Climate parameters
The spatial-computational
schematization of the basin
Vostochnaya
Suntar
Runoff formation complexes
Lower Base
SuntarKhayata
"golets" area
mountain tundra
sparse mountain
larsh forest
meteorological station
representative point
What do we need from small watersheds?
•
•
Observational data on representative basins to calibrate some model
parameters
Evaluation and systematization of the representative landscape
properties (i.e. apriori assessment of model parameters)
What do we need from experimentalists?
•
Understanding of the processes
and its clear and proved explanation
•
Understanding of the models and
their objective and active evaluation
Mutual interaction
between modellers and
experimentalists
Study objects
Valday experimental station
(research is still in progress)
*
*
Suntar-Hayata
range geophysical
station
* *
*
Nizhnedevitskaya
Water Balance
Station
Kolyma Water
Balance Station
Mogot experimental
plot
•
Mild
•
Plain, hilly
•
Steppe
•
Seasonal
CLIMATE
•
Extreme
RELIEF
•
Mountainous
LANDSCAPE
•
Tundra, taiga
PERMAFROST
•
Continuous
PRELIMINARY RESULTS
I. Nizhnedevitskaya water balance station
20
SOIL
TEMPERATURE
15
10
5
0.2 m
0
01.01.1982
01.07.1982
observed
15
T, grad C
01.07.1981
01.01.1983
01.07.1983
01.01.1984
simulated
10
0.8 m
5
01.01.1982
01.05.1982
01.09.1982
01.01.1983
observed
01.05.1983
simulated
01.09.1983
01.01.1984
SNOW CHARACTERISTICS
0.3
m
0.2
0.1
0
01-11-1982
01-12-1982
01-01-1983
01-02-1983
ob s er ved
s im u l at ed
01-03-1983
Snow height at Nizhnedevitskaya observational station
SOIL MOISTURE
400
350
mm
300
250
200
150
01.1979
01.1980
01.1981
SIMULATED
01.1982
01.1983
OBSERVED
Stream Dolgy, area 2.51 km2, content of moisture in 1-m layer
01.1984
RUNOFF
8.0
7.0
6.0
5.0
Devica river at Tovarnya,
area 103 km2
4.0
3.0
2.0
1.0
0.001.01
01.02 01.03
01.04
01.05
01.06
01.07
01.08
01.09
01.10
01.11
01.12
01.01
01.02 01.03
SIMULATED
01.04
01.05
01.06
01.07
01.08
01.09
01.10
01.11
01.12
01.01
OBSERVED
1800
1600
1400
1200
m3/s
Sosna river at Elec,
area 16300 km2
1000
800
600
400
200
0
01.03
01.05
01.07
01.09
01.11
01.01
OBSERVED
01.03
01.05
01.07
CALCULATED
01.09
01.11
01.01
II. Kolyma water balance station
10
5
SOIL
TEMPERATURE
0
-5
-10
0.4 m
-15
10.1976
01.1977
04.1977
10
OBSER VED
07.1977
10.1977
01.1978
SIMU LATED
5
grad, C
07.1976
0.8 m
0
-5
-10
-15
10.1976
04.1977
10.1977
OBSER VED
04.1978
10.1978
SIMU LATED
04.1979
10.1979
RUNOFF
Q [m3/sec]
1977
1978
0.06
0.06
0.04
0.04
0.02
0.02
0.00
I
II
III
IV
V
VI
VII
VIII
IX
X
XI
XII
II
III
IV
V
VI
VII
VIII
IX
X
XI
XII
VIII
IX
X
XI
XII
1980
0.03
0.06
0.04
0.02
0.02
0.01
0.00
I
0.04
1979
0.08
0.00
I
II
III
IV
V
VI
VII
VIII
IX
X
XI
XII
0.00
simulated
I
II
III
IV
V
observed
Yuzhny stream, area 0.27 km2
VI
VII
Т
Q
Q [m3/sec]
600
1977
1978
1977
1978
1000
0.06
0.06
400
0.04
0.04
500
200
0.02
0.02
0
0.00
I
II
III
IV
V
I
II
III
IV
V
800
VI
VII
VIII
IX
X
XI
XII
VI
VII
1979
VIII
IX
X
XI
XII
0.00
600
0.06
600
0.03
400
0.04
0.02
400
200
0.02
0.01
200
0.00
0
I
II
III
IV
V
VI
I
II
III
IV
V
VI
I
II
III
IV
V
VI
800
0.04
1979
0.08
0
VII
VIII
IX
X
XI
XII
0.00
0
simulated
VII
VIII
IX
X
XI
XII
VII VIII
1980
IX
X
XI
XII
IX
X
XI
XII
1980
I
II
III
IV
V
VI
VII
VIII
observed
Detrin at Vakhanka river mouth, area 5630 km2
T
Т
Q [m /sec]
1977
Q
1978
1977
1978
250
00
0.06
0.06
30000
20000
0.04
0.04
15000
20000
10000
0.02
0.02
1000
0
5000
0.00
0
I
I
II
II
III
III
IV
IV
V
V
VI
VI V IIVII V IIIVIII
IX IX
X
X
X IXI X IIXII
1979
I
II II
IIIIII
IVIV
VV
VVI
I
VVII
II
VVIII
III
IX
IX
XX
XI
X
I
XII
X
II
IX
IX
X
X
XI
X
I
XII
X
II
1980
1980
20000
0.03
0.06
1500
0
15000
0.04
1000
0
10000
0.02
500
0
5000
0.00 I
I
0.04
1979
0.08
2000
0
0.00
0.02
0.01
I
II
II
III
III
IV
IV
V
V
VI
VI V IIVII V IIIVIII
IX IX
X
X
X IXI X IIXII
0.00
simulated
I
I
II II
IIIIII
IVIV
VV
VVI
I
VVII
II
VVIII
III
observed
Kolyma at Kolymskoye,
basin area 526000 km2
T
Т
III. Suntar-Hayata range experimental station
Suntar at Sakharynia river mouth,
area 7680 km2
Q
Q [m3/sec]
1959
1960
1977
1000
0.06
8 0.06
00
800
600
600
0.04
400
400
2 0.02
00
0.02
200
0.04
0
0.00 I
I
II
II
III
III
IV
IV
V
V
400
VI
VI
1961
V II
VII
V III
VIII
IX
IX
X
X
XI
XI
X II
XII
0
0.00
I
I
II
II
III
III
IV
IV
V
V
VI
VI
10.04
500
1979
0.08
300
V II
V III
VII VIII
1962
IX
X
XI
X II
IX
X
XI
XII
IX
X
X
XI
XI
X II
XII
1980
0.03
0.06
1000
200
0.02
100
0.01
0.04
500
0.02
0
0.00
I
1978
1000
I
II
II
III
III
IV
IV
V
V
V I VI V IIVII V III
VIII IXIX
XX
X IXI
X XII
II
0
0.00
simulated
II
IIII
III
III
IV
IV
V
V
observed
V
VII
V
II
VII
V
III
VIII
T
Т
Yana at Dgangky,
area 216000 km2
Q
Q
1970
[m3/sec]
1971
1977
8000
1978
6000
0.06
0.06
6000
4000
0.04
4 0 0.04
00
2000
2000
0.02
0.02
0.00
I
II
I
III
II
IV
III
V
IV
VI
V
VII
VI
1972
VII
VIII
VIII
IX
X
IX
XI
X
XI
XII
XII
I
II
I
II
III
III
IV
V
VI
IV
V
VI
60.04
000
1979
0.08
0.00
VII
VIII
IX
X
XI
VII VIII
1973
IX
X
XI
XII
XII
IX
X
X
XI
XI
XII
XII
1980
6000
0.03
0.06
4000
4000
0.02
0.04
2000
2000
0.01
0.02
0
0.00
I
I
II
II
III
III
IV
IV
V
V
VIII IXIX
V I VI VIIVII VIII
XX
X IXI
XII
XII
0
0.00
simulated
II
IIII
III
III
IV
IV
V
V
observed
VII
V
VII
VII
VIII
T
Т
III. Mogot experimental plot
Nelka at Mogot, area 30.8 km2
Q, m3/s
Q [m3/sec]
4
1979
1980
6
1977
1978
5
0.06
0.06
4
3
3
0.04
0.04
2
2
1
0.02
0.02
1
0
0.00 I
II
I
4
0.08
III
II
IV
III
V
IV
VI
V
VII
VI
1981
VIII
IX
X
XI
XII
VII VIII IX
X
XI XII
0
0.00
I
II
I
III
II
IV
III
V
IV
V
VI
VII VIII
IX
VI VII VIII IX
1982
6
0.04
1979
3
0.06
0.03
2
0.04
0.02
1
0.02
0.01
X
X
XI
XII
XI XII
XX
XIXI XIIXII
1980
4
2
0.00
0
I
I II
II III III IV IV V V VI VI VII VIIVIIIVIII IX IX X X XI XI XIIXII
0.00
0
simulated
I I
II II III III IV IV V V
VIII IXIX
VIVI VIIVII VIII
observed
T
Т
Katyryk at Toko, basin area 40.2 km2
Q
1981
1982
10
5
5
0
I
II
III
IV
V
VI
VII
VIII
IX
X
XI
XII
1983
0
I
II
III
IV
V
VI
VII
VIII
IX
X
XI
XII
IX
X
XI
XII
1984
10
10
5
5
0
I
II
III
IV
V
VI
VII
0
Рассчитанный
VIII
IX
X
XI
XII
I
II
III
IV
V
VI
VII
VIII
Наблюденный
Т
Timpton at Nagorny, area 613 km2
Q
1977
1978
100
100
50
0
50
I
II
III
IV
V
VI
V II
V III
IX
X
XI
X II
0
I
II
III
IV
V
VI
1979
V II
V III
IX
X
XI
X II
V III
IX
X
XI
X II
1980
250
200
200
150
150
100
100
50
50
0
I
II
III
IV
V
VI
V II
V III
IX
X
XI
X II
0
I
II
III
IV
V
VI
V II
T
Uchur at Chyul’bu,
area 108000 km2
Q
15000
1981
1982
15000
10000
10000
5000
5000
I
II
III
IV
V
VI
VII
VIII
IX
X
XI
XII
I
II
III
IV
V
VI
1983
VII
VIII
IX
X
XI
XII
VIII
IX
X
XI
XII
1984
15000
10000
10000
5000
5000
I
II
III
IV
V
VI
VII
VIII
IX
X
XI
XII
I
II
III
IV
V
VI
VII
T
Statistics on observed vs simulated flow (averaged
for all basins in Eastern Siberia)
Daily
Year
Nash-Sutcliffe
0.78
0.93
Relative error (in
absolute value)
36 %
10 %
Conclusions
The results aim to demonstrate the possibility of a single
hydrological model application for:
(1)runoff simulations at large-scale basins, as well as for fine
time step representation of individual hydrological process
at the local scale;
(2)simulation at various landscape and climate zones with
different driving processes.
Desired future
The observations should be carried in tight interaction with
the development of hydrological models, i.e. the
experiments and observations schemes and components
are to be coordinated in order to be used in the adoption or
rejection of current hydrological theories and assumptions.
REFERENCES (in English)
• Vinogradov, Yu.B., 2003a, River Runoff Modeling in Hydrological Cycle,
edited by I.A. Shiklomanov, in Encyclopedia of Life Support Systems
(EOLSS), Developed under the auspices of the UNESCO, Eolss Publishers,
Oxford, UK, [http://www.eolss.net]
• Vinogradov, Yu.B., 2003b, Runoff Generation and Storage in Watershed in
Hydrological Cycle, edited by I.A. Shiklomanov, in Encyclopedia of Life
Support Systems (EOLSS), Developed under the auspices of the UNESCO,
Eolss Publishers, Oxford, UK, [http://www.eolss.net]