Transcript Slide 1

Stochastic Seismic Inversion using Waveform and Traveltime Data and Its Application to Time-lapse Monitoring

Youli Quan & Jerry M. Harris Stanford University

November 12, 2008

Outline

Introduction MotivationsKalman filter

Seismic inversion with EnKFAn example of CO

2

storage monitoring

Conclusions

Introduction

• • • Seismic inversion recovers subsurface elastic properties (e.g., acoustic impedance and velocity) from seismic data.

Inversion using both waveform and traveltime improves the estimation of velocity. Estimation of absolute velocity helps quantitative interpretation of seismic data.

• Images of seismic inversion may be more meaningful for interpretation. 0 100 200 300 400 500 600 700 800 -0.2

0 0.2

Amplitude Traces Seismic Inversion Impedance Traces

0 100 200 300 400 500 600 700 800 0 0.5

1

• • • Deterministic inversion methods normally need less computation.

Stochastic inversion uses more computing power but can integrate other information (e.g., sonic logs.) Ensemble Kalman Filter (EnKF) is a stochastic method used in this study for seismic inversion.

Motivations to Use EnKF

• Seismic monitoring - To integrate time-lapse seismic data - Dynamic imaging • Reservoir characterization - Integration of sonic logs and seismic data

Kalman Filter

• Dynamic imaging

m

(

t

 1 ) 

m

(

t

) 

k

(

d

(

t

 1 ) 

Gm

(

t

) ) • Integration of sonic logs and seismic data 

m

(

sonic

) 

k

(

d

(

seismic

) 

Gm

(

sonic

) ) Kalman gain

k

CG

T

(

GCG

T

R

)  1

Seismic Inversion with EnKF

Define observation function

d

g

(

m

) • Create model & data ensembles using their probability distributions

M

[

m

1

,...,

m

N

]

D

[

d

1

,...,

d

N

]

d – poststack seismic data in this case

Define observation function

d

g

(

m

)

m Poststack

Full waveform Convolution

d

Create model ensemble

1.4

x 10 -3 1.2

1 0.8

0.6

0.4

0.2

0 0 1000 m0 2000 3000 Velocity (m/s) 4000 5000 6000

m

i

m

0 

ε

i

M

[

m

1

,...,

m

N

]

Create data ensemble

4 x 10 -3 3 2 1 0 -1000 -500 0 Aplitude 500 1000

d

i

d

γ

i

D

[

d

1

,...,

d

N

]

• Estimate model parameters with EnKF

M

(

t

 1 ) 

M

(

t

) 

K

[

D

(

t

 1 )  (

t

) )]

K

can be simply calculated from the ensemble covariance

C

 [

M

E

(

M

)][

M

E

(

M

)]

T

/(

N

 1 )

R

 [

D

E

(

D

)][

D

E

(

D

)]

T

/(

N

 1 ) and observation function

g

(

M

) It can handle large model and non-linear inverse This is a Monte Carlo approach

An Example of

CO 2

Storage Monitoring

• •

CO 2 Sequestration

CO 2 sequestration provides a possible solution for reducing the green gas emission to the atmosphere. For safety and operational reasons, we need to monitor the containment of the CO in the subsurface.

2 storage

Creation of Time-lapse Models

• • • • Find model parameters from unmineable coalbeds in Powder River Basin Build a stationary geology model Run flow simulation with GEM Convert flow simulation results to time-lapse seismic velocity models

200 400 600 800 0 200 400 600 Distance(m) 800 200 400 600 800 0 200 4000 600 800 Distance(m) 200 400 600 800 0 200 400 600 800 Distance(m) 200 400 600 800 0 200 400 600 Distance(m) 800 200 400 600 800 0 200 400 600 Distance(m) 800 200 400 600 800 0 200 400 600 Distance(m) 800 200 400 600 800 0 200 400 600 Distance(m) 800 200 150 100 50 5000 4000 3000

Four time-lapse P-wave velocity modes created based on CO 2 flow simulation in the coalbeds. A: time=0; B: time=3 months; C: time=1 year; D: time=3 years.

A Simple Synthetic Test

“Observed” data calculated by convolution 200 400 600 800 0 500 Distance(m) 200 400 600 800 1000 0 500 Distance(m) 200 400 600 800 1000 0 500 Distance(m) 200 400 600 800 1000 0 500 Distance(m) 1000

Inversion with Waveform Data Inversion with Waveform and Travel Time Data Use constant initial model

A Full Waveform Synthetic Test

• • • • • • Run FD for time-lapse Vp models derived from flow simulation. Process complete shot gathers and get depth and time images. Extract wavelet. Use convolution as the modeling in the inversion.

Perform seismic inversion with EnKF.

Compare the inverted Vp with given models.

Samples of the shot gathers calculated using the finite difference

0 0.1

0.2

0.3

0.4

0.5

0.6

Depth image

100 200 300 400 500 600 700 800 220 380 Distance(m) 580 780

Time image

0 0.1

0.2

0.3

0.4

0.5

0.6

100 300 500 Distance (m) 700 900

Traveltime picks used for the inversion

Reflector Depth (m) Time (sec) 270 1 0.1675

310 2 0.1918

550 3 0.3340

4 670 0.4173

750 5 0.4595

Time-lapse velocity models inverted using EnKF

200 400 600 800 200 400 600 800 200 400 600 800 200 400 600 800 Distance (m) Distance (m)

time=0 time=3 months time= 1 year time=3 years

5000 4500 4000 3500 3000 2500 v (m/s)

Vp differences between time-lapse models and base model

200 400 600 800 200 400 600 800 200 400 600 800 200 300 400 500 600 Distance(m) 700 800

True

200 300 700 400 500 600 Distance(m)

time=3 months time= 1 year time=3 years

800 dv(m/s) 100 0 -100

Inverted

-200

A comparison between true model and inverted model

100 200 300 400 500 600 700 True Init.

Inv.

800 2000 3000 4000 Velocity (m/s) 5000 Solid black line: Ture model; Dash-dot blue line: inverted model; Dotted yellow line: Initial model; At distance x=500m

A comparison between “observed” data and modeled data

100 200 300 Given Conv. 400 500 600 700 800 -0.5

0 Amplitude 0.5

Solid line: “Observed” seismic trace Dotted line: Modeled seismic trace from inverted model

• • •

Conclusions

The ensemble Kalman filter is a useful tool for stochastic seismic inversion, especially for dynamic inversion in seismic monitoring (field data tests will be done.) Integrating travetime data into the inversion makes the estimation of absolute velocity possible. Fast forward modeling and true amplitude processing are essential.

Acknowledgements

• •

We would like to thank the sponsors (ExxonMobil, General Electric, Schlumberger, and Toyota

)

Global Climate & Energy Project at Stanford of University for their support to this study. Eduardo Santos, Yemi Arogunmati, and Tope Akinbehinje helped for the creation of time-lapse velocity models.