Transcript Document
ADVANCES IN SEMICONDUCTOR DETECTORS FOR 1016 PARTICLE TRACKING IN EXTREME RADIATION ENVIRONMENTS. Cinzia Da Via’, Brunel University, UK OUTLINE 123- INTRODUCTION PRESENT STATUS OF RADIATION HARD SILICON DETECTORS UP TO 1015 neq/cm2 STRATEGIES FOR SURVIVAL BEYOND 1015 neq/cm2: a b c DEVICE GEOMETRY : short collection distance -3D,thin TEMPERATURE and FORWARD BIAS OPERATION DEFECT ENGINEERING :O and O2 4- CONCLUSIONS 1 Cinzia Da Via' - Brunel University UK INTRODUCTION 1016 LARGE HADRON COLLIDER CERN - GENEVA new physics expected!! BUT NEED HIGH STATISTICS s 14TeV Luminosity [cm-2s-1] pp Bunch [collisions/s] Spacing [ns] LHC 2007 1034 8x108 ~25 SLHC ~2015 1035 1011 ~12 ~6000 tracks per bunch crossing!! 27 Km 2 Cinzia Da Via' - Brunel University UK 1016 PHYSICS REQUIREMENTS p Most probable Higgs channel Was it there already?? b p H b PRECISE MEASUREMENTS OF •MOMENTUM RESOLUTION •TRACK RECONSTRUCTION •b-TAGGING EFFICIENCY HIGHER STATISTICS NEEDED FOR Aleph GOOD TRACKER ESSENTIAL! Cinzia Da Via' - Brunel University UK •ACCURACY OF STANDARD MODEL PARAMETERS •ACCURACY OF NEW PHYSICS PARAMETERS •SUPERSYMMETRIC PARTICLES •EXTRA DIMENSIONS •RARE PROCESSES (TOP DECAYS, HIGGS PAIRS ETC) ~10 SMALLER PITCH SILICON DETECTORS CAN DO IT!!! 3 1016 RADIATION ENVIRONMENT AT LHC AND SLHC B-LAYER ~4cm 1.6x1016 ATLAS >85% Ch hadrons total n p other charged hadrons 210 m2 of microstrips silicon detectors Multiple particle environment: NIEL scaling 1 MeV n equivalent Violation observed for oxygen rich materials ~5x1015 ~5x1014 Data from CERN-TH/2002-078 4 Cinzia Da Via' - Brunel University UK 1016 SILICON DETECTORS "NORMALLY " USED IN PARTICLE PHYSICS Substrate normally: 300 mm +V oxide W + + + + + + - - - - - Incident particle metallised strips p-type junctions •n-type •4 k-cm FZ •Doping of ~1012 cm-3 •[O] ~1015 cm-3 •[C] ~1015 cm-3 •300mm thick •Orientation <111> n-type substrate 5 Cinzia Da Via' - Brunel University UK 1016 RADIATION INDUCED BULK DAMAGE in Si Primary Knock on Atom Displacement threshold in Si: Frenkel pair E~25eV Clusters E~5keV Vacancy Interstitial Van Lint 1980 6 Cinzia Da Via' - Brunel University UK RADIATION INDUCED STABLE DEFECTS IN SILICON 1016 From Cern ROSE RD48 Neutron irradiated DEFECT KINETICS ( 300K ): V,I + IMPURITIES DOPANTS CHARGED DEFECTS ==>NEFF, VBIAS DEEP TRAPS, RECOMBINATION CENTERS ==>CHARGE LOSS DLTS spectrum Ec Ei GENERATION CENTERS==>LEAKAGE CURRENT V6 VOEc - 0.17eV V2(=/-)+Vn Ec-0.22eV V2(-/0)+Vn Ec-0.40eV V2O CIOI(0/+) Ev Cinzia Da Via' - Brunel University UK EV+0.36eV VO effective e and h trap V2 and V2O deep acceptors 7 contribute to Neff 1016 PRESENT RESEARCH FOCUSES AT FLUENCES UP TO 1x1015 n/cm2 STANDARD 300mm n-type SILICON at 1015 n/cm2 10 years of operation at L=1034 cm-2s-1 at R=4 cm EFFECTIVE DRIFT LENGTH Due to charge trapping ~150mm e- ~50mm h SPACE CHARGE TYPE INVERSION -ve Neff (1013/cm3) ~ VFD (5000V)~ F depletion from n-contact (e-field) REVERSE ANNEALING INCREASE OF -ve Neff temp. dep LEACKAGE CURRENT prop to F (I/V ~5x10-17 F) Noise Thermal runaway Signal formation Charge sharing Speed Double junction Charge diffusion Time [y] Maintenance Cinzia Da Via' - Brunel University UK 8 1016 MAIN DETECTOR STRATEGIES PROPOSED FOR LIFE ABOVE 1015 n/cm2 OPTIMIZATION OF: COLLECTION DISTANCE CCE (trapping) SPEED SPACE CHARGE REVERSE ANNEALLING CCE (undepletion) STRATEGIES: DEVICE GEOMETRY 3D, THIN DEFECT ENGINEERING O, P-TYPE SUBSTRATE MODE OF OPERATION Temperature, Forward bias CHARGE SHARING LEAKAGE CURRENT MORE TO GAIN BY COMBINING TECHNIQUES! 9 Cinzia Da Via' - Brunel University UK 1016 EFFECTIVE DRIFT LENGTH Leff = tt x Vdrift -1 2500 ( 1V/micron) 7 1.2 10 14 10 n cm Vde Vdh -2 7 1 10 teffn teffnh 25 6 8 10 20 6 6 10 6 4 10 6 2 10 10 50 Measured values 100 150 200 250 300 350 Temperature (K) Leff at 1016 proton/cm2 ~ 20 mm electrons ~ 10 mm holes Data avalable for neutron andprotons for effective trapping time 220K-300K from Kramberger et al Cinzia Da Via' - Brunel University UK -2 4 -1 E = 10 V cm 2000 Proton Electrons 1500 1000 Neutron Holes Proton 500 100 150 3000 5 200 250 300 350 Temperature (K) -1 14 -2 10 ncm E = 10 Vcm Effective Drift Length (microns) 15 14 FOR FLUENCE = 10 cm Neutron 0 50 -1 Drift Velocity (cm s ) Effective Trapping Time (ns) 30 Effective Trapping Length ( microns) 4 E = 10 V cm ( mt ) 2500 neutron 2000 protons Electrons 1500 neutrons Holes 1000 protons 500 50 100 150 200 250 300 Temperature (K) Simulation by S. Watts/Brunel Accepted for publication on NIM 10 350 1016 SIGNAL FORMATION AFTER IRRADIATION W. Shockley, Jour. Appl.Phys. 9,635 (1938) S. Ramo, Proc. of I.R.E. 27, 584 (1939) Gatti and coworkers RAMO's THEOREM Signal ~ q(Vxw-V0w) e-th/th + (Vcw-Vxw) e-te/te) Depends on carriers drift length 0.16 A/x h+ p+ 1 e h 0.6 0.4 0.2 n+ COLLECTION ELECTRODE WeightPot STRIP -2 1E15 n cm 200K Prob e STRIP Prob h STRIP Prob signal STRIP 0.8 p /p /Signal e- collecting Trapping Shaping time 0 0 0 0.005 0.01 0.015 0.02 Distance (cm) 0.025 x 0.03 0.035 c HOLES DON' T CONTRIBUTE Cinzia Da Via' - Brunel University UK Simulation by S. Watts Accepted for publication On NIMA Waiting potential is steeper if contact small compared with detector thickness moreover minimize charge sharing with neighbours due to charge trapping Planar device Small contact area Thin substrate High e-field 11 1016 SHORT COLLECTION DISTANCE: S. Parker, C. Kenney 3D DETECTOR 1995 n n p SHORT COLLECTION PATHS 50 mm (300mm) LOW DEPLETION VOLTAGES <10V (60V) RAPID CHARGE COLLECTION 1-2n (25 ns) EDGELESS CAPABILITY active edges LARGE AREA COVERAGE active edges SUBSTRATE THICKNESS INDEPENDENT : BIG SIGNALS X-RAY DETECTION EFFICIENCY for low Z materials p p+ n+ n+ Same Generated Charge!!! + 300 mm + - 50 mm depletion Cinzia Da Via' - Brunel University UK C=0.2pF IEEE vol46 N4 Aug. 99 p+ 12 1016 ETCHING TECHNIQUES DEEP REACTIVE ION ETCHING LASER ABLATION ELECTROCHEMICAL ETCHING ELECTRODE FILLED WITH POLYSILICON fs pulses is cleaner, any substrate Fast, high aspect ratio NIMA 487 (2002) 19 ASPECT RATIO = 11:1, 19:1 Cinzia Da Via' - Brunel University UK 20:1<13 1016 3D DETECTOR RESULTS before irradiation DETECTOR THICKNESS 121mm 282e noise PREAMP - SHAPING TIME 1 ms 200 mm PITCH mSTRIP TYPE DETECTOR GAUSSIAN RESPONSE SPEED 1.5ns rise AT 130K 3.5ns rise AT 300K 350 e rms , fast electronic designed at CERNmicroelectronics group 200mm pitch detector TO BE PUBLISHED Cinzia Da Via' - Brunel University UK 14 1016 3D RADIATION RESULTS AT 300K After irradiation 1x1015 p/cm2 (5x1014n/cm2) NON OXYGENATED 100mm pitch detector FULL DEPLETION BIAS = 105 V AFTER 2x1015 n/cm2 SPEED 3.5 ns rise time 40V bias, 300K joined work Brunel, Cern, Hawaii To be published Cinzia Da Via' - Brunel University UK IEEE Trans on Nucl Sci 48 (2001) 1629 15 1016 3D CHARGE COLLECTION EFFICINECY After irradiation More on 3D later this morning (P. Roy, 11:30) Vbias Vsig Vbias= 40V n p 100 mm n CCE =61% USING THE INTEGRATED 22-25 KeV XRAY PULSES FROM A 109Cd SOURCE COLLECTION FROM p-ELECTRODE Vbias Vsig Vbias =40V n 134 mm p n 100 mm 200mm Non-Irradiated, 300 K 1 x 1015 p/cm2, 300 K No Oxygen Diffusion Reverse Annealed 16 Cinzia Da Via' - Brunel University UK Brunel, CERN, Hawaii to be published 1016 MAIN DETECTOR STRATEGIES PROPOSED FOR LIFE ABOVE 1015 n/cm2 OPTIMIZATION OF: COLLECTION DISTANCE CCE (trapping) SPEED SPACE CHARGE REVERSE ANNEALLING CCE (undepletion) STRATEGIES: DEVICE GEOMETRY 3D, THIN DEFECT ENGINEERING O2, P-TYPE SUBSTRATE MODE OF OPERATION Temperature, Forward bias CHARGE SHARING MORE TO GAIN BY COMBINING TECHNIQUES! 17 Cinzia Da Via' - Brunel University UK SPACE CHARGE after Irradiation – type inversion 1016 At 300K Introduction of radiation induced Deep acceptors p+ Active volume before - - irradiation - W- d -Active volume - after irradiation High field n+ Type inversion AFTER TYPE INVERSION DEPLETION STARTS FROM n+ CONTACT Cinzia Da Via' - Brunel University UK VFD (W )2 e N eff 2ε 0ε Si 18 1016 THE OXYGEN MIRACLE : ROSE/RD48 REDUCED VFD 3 times Nucl. Instr. Meth. A 466 (2001) 308 Reduced Reverse Annealing Saturation (2 times) 19 Cinzia Da Via' - Brunel University UK 1016 NEUTRON PROTON PUZZLE COMPETING MECHANISM DUE TO COULOMB INTERACTION MORE POINT DEFECTS WHEN CHARGED PARTICLE IRRADIATION V+O = VO DOES NOT CONTRINUTE TO NEFF V2+0 = V2O CONTRIBUTES TO NEFF 20 Cinzia Da Via' - Brunel University UK 1016 CHARGE COLLECTION EFFICIENCY AFTER IRRADIATION p+ -W p-type bulk n on p n+ - d High field Qcoll = q * d/W Vbias TRAPPING Standard p on n Oxygenated p on n 25ns electronics 3x1014 n/cm2 T=-170C UNDEPLETED REGION 1 – 3 x 1014 n/cm2 0 100 200 300 400 500 OXYGEN ONLY DOES NOT HELP! NIMA 487 (2002) 465-470 NIM A 412 (1998) 238 Cinzia Da Via' - Brunel University UK Vbias 21 600 1016 ATLAS PIXELS AFTER 1015 n/cm2 Nucl Inst Meth A 456 (2001) 217-232 These data curtesy from L. Rossi, unpublished CCE 97.7% AT 600V 250mm Time=10ns n+ on n oxygenated 250 mm Multi guard - p-spray COMBINED STRATEGIES!! 13 mm Spatial resolution 22 Cinzia Da Via' - Brunel University UK 1016 EFFECT ON CHARGE SHARING Diffusion due to low field region after type inversion Double sided strips p+ 10 Electric Field (V/cm) Resolution [mm] 3.1014 n/cm2 4 n+ 1000 100 5V 10V 20V 50V 200V 10 LHCb Vbias 180K 1 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 p side Distance (cm) p+ Vbias NIM A 440 (2000) 17 n side Efficiency ATLAS 1-5 x 1014 n/cm2 Cinzia Da Via' - Brunel University UK >1015 n/cm2 NIMA 426 (1999) 140 SIMULATION S WATTS UNPUBLISHED Vbias 23 NIM A 450 (2000) 297 Vbias SPACE CHARGE Below 200 K 1016 NEFF DECREASE WITH T!! energy level occupancy ~ e- E/kT 1.3 10 LAZARUS effect 12 1x1014 n/cm2 > type inverted : -ve SC 1.2 10 12 1.1 10 12 1.0 10 12 9.0 10 11 8.0 10 11 7.0 10 11 TRAPPING NEFF -3 Neff [cm ] CCE INCREASES! Low leakage current No reverse annealing High carriers mobility Phosphorus doping level 6.0 10 11 5.0 10 11 +ve SC 80 100 120 140 T [K] T [K] Cinzia Da Via' - Brunel University UK 160 180 C Da Via To be published NIM.. Nucl Inst Meth A 413 (1998) 475 Nucl Inst Meth A 440 (2000) 5 24 1016 FORWARD BIAS OPERATION AT LOW TEMPERATURE d Forward bias Reverse bias NIM A 440 (2000) 5 f = 1015 n/cm2 T=130K 0 min CCE % x 5 min 15 min 30 min time V bias undepleted td ~ eE/kT T=249K (-24C) f = 1015 n/cm2 NIM A 439 (2000) 293. Cinzia Da Via' - Brunel University UK Reverse bias, 700 V Higher CCE "polarization effect" Forward bias 90 V 25 1016 IF IRRADIATION AT 130K: different kinetics! 1- formation of defects V, I, Vn, In, depending on particles 2- V + and V- observed already at 4.2K after e- 0 Fluence CCE(W) 5E14 6e14 n/cm2 CCE(W) 2E15 6E14n/cm2 after WU CCE(W) 1E15 100 irradiation 3- V present in 5 charge states V2+, V+, V0, V-, V2-. 80 ~70K in n-type low res CCE% ~150K in p-type ~200K in high res. material 5- at 200K new spectra appears (V2, VO) migrates!! => V 6- V migration also possible by ionisation = athermal process CCE % 4- the V spectra disappear at : After annealing at 200K better by 20% 60 40 Irradiated at 300K For comparison 20 7- I mobile at 4.2K in p-type, ~140-175K in n-type (G. Watkins .Mat. Sci. in Sem. Proc. 3 (2000) 227) 0 0 Systematic study needed! 50 100 150 200 voltage VOLTAGE (V) NIM A 476 (2002) 583 26 Cinzia Da Via' - Brunel University UK 250 1016 NEW DEFECT ENGINEERED MATERIAL: O-DIMER TO CONTROL CHARGE TRAPPING 10 5 10 OXYGEN INTERSTITIAL Si 0 Oi Si OXYGEN DIMER Si Oi Concentration (cm -3 ) Si 1.1 x1011 p/cm2 10 -5 10 11 -1 10 11 -1.5 10 11 -2 10 E(90) E(225) E(170) Oi Si HIGH TEMPERATURE 60Co g IRRADIATION AT T > 350 0C OXYGEN ATOMS BECOMES MOBILE AND START TO CLUSTER QUASI CHEMICAL REACTIONS: V+Oi => VOi VOi + Oi => VO2i I + VO2i => O2i Cinzia Da Via' - Brunel University UK 366p 309p 366Dp 309Dp 11 -2.5 10 NIM B 186 (2002) 111 100 150 200 250 300 Temperature (K) D= dimerized p=proton irradiated DLTS shows VO suppressed Less trapping! Theory predicts VO2 is NEUTRAL! 27 1016 SUMMARY WE KNOW HOW TO: 1- HAVE A SHORT COLLECTION DISTANCE + COLLECTING eoptimise signal formation spatial resolution speed 2- CONTROL THE SPACE CHARGE power dissipation (noise) CCE spatial resolution 3- CONTROL CHARGE TRAPPING CCE spatial resolution USING : device structure 3D – THIN (small pitch) Defect engineering operational mode Temperature, forward bias Defect engineering p-type operational mode MORE GAIN BY COMBINING TECHNIQUES!!!28 Cinzia Da Via' - Brunel University UK 1016 CONCLUSIONS THE COMBINATION OF: ENGINEERED SILICON (oxygen enriched), p-type substrate INNOVATIVE SHORT DRIFT LENGTH GEOMETRIES (3D, thin) OPERATIONAL CONDITION (temperature, forward bias) COULD PROVIDE THE RADIATION TOLERANCE OF SILICON NEEDED TO GUARANTEE THE OPERATION OF PARTICLE TRACKERS AT 1016 n/cm2 ELECTRONICS PLAYING A KEY ROLE!! •Recently formed CERN R&D (RD50) will explore several of the proposed strategies •Interest expressed by LHC elastic scattering, Luminosity monitor collaborations to use existing technologies like 3Dand cryogenic silicon. 29 Cinzia Da Via' - Brunel University UK 1016 ACKNOWLEDGEMENTS Luca Casagrande/ Roma GianLuigi Casse/Liverpool Alex Chilingarov /Lancaster Paula Collins/Cern Leo Rossi /Atlas pixel Mahfuzur Rahman/Glasgow Angela Kok, Anna Karpenko,Gennaro Ruggiero/ Brunel Erik Heijne/Cern Sherwood Parker/Hawaii Steve Watts /Brunel 30 Cinzia Da Via' - Brunel University UK 1016 “The most important thing in science is imagination” A. Einstein 31 Cinzia Da Via' - Brunel University UK