Transcript Slide 1
OFB Chapter 5 The Gaseous State 5-1 The Chemistry of Gases 5-2 Pressure and Boyle’s Law 5-3 Temperature and Charles’s Law 5-4 The Ideal Gas Law 5-5 Chemical Calculations for Gases 5-6 Mixtures of Gases 5-7 Real Gases 7/18/2015 OFB Chapter 5 1 Chapter 5 The Gaseous State Examples / Exercises – 5-1 thru 5-13 Problems – 8, 18, 26, 34, 38, 46, 68 7/18/2015 OFB Chapter 5 2 OFB Chapter 5 The Gaseous State Early discoveries of gases formed by chemical reactions: heat 2 HgO(s) 2 Hg(l) + O2(g) Lavoisier used this to establish the conservation of mass theory heat Marble: CaCO3(s) CaO(s) + CO2(g) heat NH4Cl(s) HCl(g) + NH3(g) Nitroglycerin: 4 C3H5(NO3)3(l) 6 N2(g) + 12 CO2(g) + O2(g) + 10 H2O(g) CaCO3(s) + HCl(aq) 7/18/2015 OFB Chapter 5 CaCl2(aq) + H2O(g) + CO2(g) 3 Pressure and Boyle’s Law force (F) = mass * acceleration = Newton (N) = kg m s-2 acceleration (a) = velocity per unit of time [m s-2] mass (m) = quantity of matter [kg] area (A) = m2 7/18/2015 OFB Chapter 5 4 Pressure and Boyle’s Law 7/18/2015 OFB Chapter 5 5 Pressure and Boyle’s Law P = gdh g = acceleration of gravity at the surface of the Earth = 9.80665 m s-2 d = density of the liquid = for Hg at 0ºC = 13.5951 g cm-3 = 13.5951 kg m-3 h = height of mercury in the column = 76 cm = 760 mm = 0.76 m P = gdh = (9.80665 m s-2)(13.5951 kg m-3) (0.76 m) 7/18/2015 OFB Chapter 5 6 A pressure of 101.325 kPa is need to raise the column of Hg 760 mm or 76 cm Called standard pressure 7/18/2015 OFB Chapter 5 7 Boyle’s Law: The Effect of Pressure on Gas Volume The product of the pressure and volume, PV, of a sample of gas is a constant at a constant temperature: 7/18/2015 OFB Chapter 5 8 Boyle’s Law: The Effect of Pressure on Gas Volume STP For 1 mole of any gas (i.e., 32.0 g of O2; 28.0 g N2; 2.02 g H2), STP = standard temperature and pressure = 0oC and 1 atm 7/18/2015 OFB Chapter 5 9 Boyle’s Law: The Effect of Pressure on Gas Volume Exercise 5-3 The long cylinder of a bicycle pump has a volume of 1131 cm3 and is filled with air at a pressure of 1.02 atm. The outlet valve is sealed shut, and the pump handle is pushed down until the volume of the air is 517 cm3. The temperature of the air trapped inside does not change. Compute the pressure inside the pump. 7/18/2015 OFB Chapter 5 10 Temperature and Charles’ Law Charles’ Law: The Effect of Temperature on Gas Volume V t 273.15C 1) V 7/18/2015 OFB Chapter 5 11 Charles’ Law: The Effect of Temperature on Gas Volume Absolute Temperature V = Vo ( t 1+ 273.15oC ) Kelvin temperature scale 7/18/2015 OFB Chapter 5 12 Charles’ Law: The Effect of Temperature on Gas Volume 7/18/2015 OFB Chapter 5 13 Exercise 5-4 The gas in a gas thermometer that has been placed in a furnace has a volume that is 2.56 times larger than the volume that it occupies at 100oC. Determine the temperature in the furnace (in degrees Celsius). 7/18/2015 OFB Chapter 5 14 Boyle’s Law P1V1 = P2V2 (at a fixed temperature) Charles’ Law V1 / V2 = T1 / T2 Avogadro (at a fixed pressure and temperature) 7/18/2015 (at a fixed pressure) OFB Chapter 5 15 The Ideal Gas Law V 7/18/2015 -1 nTP OFB Chapter 5 16 The Ideal Gas Law P1V1 R n1T1 7/18/2015 P2V2 R n2T2 OFB Chapter 5 17 Exercise 5-5 At one point during its ascent, a weather balloon filled with helium at a volume of 1.0 104 L at 1.00 atm and 30oC reaches an altitude at which the temperature is -10oC yet the volume is unchanged. Compare the pressure at that point. P1V1 P2V2 n1T1 n2T2 7/18/2015 OFB Chapter 5 18 The Ideal Gas Law R universal gas constant ? for fixed V, P, and T, the number of n is fixed as well, and independent of the particular gas studied (22.414L)( 1atm) PV R nT (1.00mol)(273.15 K) (22.414x 10-3 m3 )(101.325x 103 N m-2 ) R (1.00mol)(273.1 5K) 7/18/2015 OFB Chapter 5 19 PV = nRT ideal gas law R 0.082 L atm mol K -1 R 8.31 J mol 7/18/2015 OFB Chapter 5 1 K -1 1 20 Exercise 5-6 What mass of Hydrogen gas is needed to fill a weather balloon to a volume of 10,000 L at 1.00 atm and 30C? Strategy 1.) use PV = nRT 2.) 3.) 7/18/2015 OFB Chapter 5 21 Exercise 5-6 What mass of Hydrogen gas is needed to fill a weather balloon to a volume of 10,000 L at 1.00 atm and 30C? 7/18/2015 OFB Chapter 5 22 Gas Density and Molar Mass P V nRT m P V RT M 7/18/2015 OFB Chapter 5 23 Gas Density and Molar Mass Exercise 5-7 Calculate the density of gaseous hydrogen at a pressure of 1.32 atm and a temperature of -45oC. P d M RT 7/18/2015 OFB Chapter 5 24 Gas Density and Molar Mass P V nRT m P V RT M Rearrange m P M V RT RT m RT M d P V P RT M d P 7/18/2015 P d M RT OFB Chapter 5 25 Exercise 5-8 Fluorocarbons are compounds of fluorine and carbon. A 45.60 g sample of a gaseous fluorocarbon contains 7.94 g of carbon and 37.66 g of fluorine and occupies 7.40 L at STP (P = 1.00 atm and T = 273.15 K). Determine the approximate molar mass of the fluorocarbon and give its molecular formula. 7/18/2015 OFB Chapter 5 26 Exercise 5-8 Fluorocarbons are compounds of fluorine and carbon. A 45.60 g sample of a gaseous fluorocarbon contains 7.94 g of carbon and 37.66 g of fluorine and occupies 7.40 L at STP (P = 1.00 atm and T = 273.15 K). Determine the approximate molar mass of the fluorocarbon and give its molecular formula. RT M d P 1 1 45.60g 0.082L atm mol K x 273K 1atm 7.40L M 138g mol1 1molC 0.661molC n C 7.94g C x 12 g C 0.661mol 1 part C 1molF 1.982mol F n F 37.66g F x 0.661mol 3 partsF 19 g F 7/18/2015 OFB Chapter 5 27 Chemical Calculations for Gases Why use Volume for gases in chemical reaction calculations? The volume of a gas is easier to measure than the mass of a gas. Exercise 5-9 Ethylene burns in oxygen: C2H4(g) + 3 O2(g) 2 CO2(g) + 2H2O(g) A volume of 3.51 L of C2H4(g) at a temperature of 25oC and a pressure of 4.63 atm reacts completely with O2(g). The water vapor is collected at a temperature of 130oC and a pressure of 0.955 atm. Calculate the volume of the water vapor. 7/18/2015 OFB Chapter 5 28 Exercise 5-9 Ethylene burns in oxygen: C2H4(g) + 3 O2(g) 2 CO2(g) + 2H2O(g) A volume of 3.51 L of C2H4(g) at a temperature of 25oC and a pressure of 4.63 atm reacts completely with O2(g). The water vapor is collected at a temperature of 130oC and a pressure of 0.955 atm. Calculate the volume of the water vapor. P1V1 P2V2 PC2 H 4VC2 H 4 PH 2OVH 2O n1T1 n2T2 nC H TC H nH 2OTH 2O 2 4 2 4 Condit ion1 is C 2 H 4 and Condit on2 is H 2 O 1partC 2 H 4 for 2 part sH 2 O n C2H 4 2 n H2 0 PC 2 H 4 4.63at m VC 2 H 4 3.51L TC 2 H 4 298K PH 2O 0.955at m TH 2O 7/18/2015 403K VH 2O x OFB Chapter 5 29 Exercise 5-9 Ethylene burns in oxygen: C2H4(g) + 3 O2(g) 2 CO2(g) + 2H2O(g) A volume of 3.51 L of C2H4(g) at a temperature of 25oC and a pressure of 4.63 atm reacts completely with O2(g). The water vapor is collected at a temperature of 130oC and a pressure of 0.955 atm. Calculate the volume of the water vapor. P1V1 P2V2 n1T1 n2T2 PC2 H 4VC2 H 4 nC2 H 4 TC2 H 4 PH 2OVH 2O nH 2OTH 2O VH2O PC2H4 VC2H4n H2O TH2O nC2H4TC2H4 PH2O VH2O PC2H4 VC2H4n H2O TH2O 2n H2O TC2H4 PH2O VH2O PC2H4 VC2H4TH2O 2TC2H4 PH2O 7/18/2015 VH2O 46.0L OFB Chapter 5 30 Mixtures of Gases Dalton’s Law of Partial Pressures The total pressure of a mixture of gases equals the sum of the partial pressures of the individual gases. 7/18/2015 OFB Chapter 5 31 Mole Fractions and Partial Pressures The mole fraction of a component in a mixture is define as the number of moles of the components that are in the mixture divided by the total number of moles present. Mole Fractionof A X A nA nA XA n tot n A n B ... n N PA V n A RT Ptot V n tot RT divide equat ions PA V n A RT PA nA nA or or PA Ptot Ptot V n tot RT Ptot n tot n tot PA X A Ptot 7/18/2015 OFB Chapter 5 32 Exercise 5-11 A solid hydrocarbon is burned in air in a closed container, producing a mixture of gases having a total pressure of 3.34 atm. Analysis of the mixture shows it to contain 0.340 g of water vapor, 0.792 g of carbon dioxide, 0.288 g of oxygen, 3.790 g of nitrogen, and no other gases. Calculate the mole fraction and partial pressure of carbon dioxide in this mixture. 7/18/2015 OFB Chapter 5 33 Section 5-7 Kinetic Theory of Gases Section 5-8 Real Gases 7/18/2015 OFB Chapter 5 34