Transcript Slide 1
Nanophotonics January 9, 2009 Near-field optics Resolution in microscopy Why is there a barrier in optical microscopy resolution? And how can it be broken? Angular spectrum and diffraction limit Describe field as superposition of plane waves (Fourier transform): ˆ k , k ; z E x y 1 4 2 E x, y, z e i k x x k y y dxdy i k x x k y y ˆ dk x dk y E x, y, z E k x , k y ; z e Field at z=0 (object) propagates in free space as ˆ k , k ; z E ˆ k , k ;0 e ik z z E x y x y The propagator H is oscillating for and exponentially decaying for kz nk0 kx2 k y2 2 kx2 k y2 nk0 2 kx2 k y2 nk0 2 High spatial fluctuations do not propagate: diffraction limit The diffraction limit in conventional microscopy Image of a point source in a microscope, collecting part of the angular spectrum of the source: Rayleigh criterion: two point sources distinguishable if spaced by the distance between the maximum and the first minimum of the Airy pattern q + d 0.61 NA NA n sin q Numerical Aperture determines resolution Airy pattern (microscope point spread function) Breaking the diffraction limit in near-field microscopy A small aperture in the near field of the source can scatter also the evanescent field of the source to a detector in the far field. Image obtained by scanning the aperture Alternatively, the aperture can be used to illuminate only a very small spot. Probing beyond the diffraction limit Single emitter Metallic particle Aperture probe fibre type Aperture probe microlever type Modified slide from Kobus Kuipers and Niek van Hulst et al. Transmission of light through a near-field tip 200 nm Excitation light Al NSOM probe FIB treated probe Aperture ~20-100 nm Protein, dendrimer, DNA, etc. single fluorophores Fluorescence Thin polymer film, self-assembled monolayer, cell membrane, etc. Focussed ion beam (FIB) etched NSOM probe – well defined aperture – flat endface – isotropic polarisation – high brightness up 1 mW 35 nm aperture 100 nm glass 100 nm With excitation Ex , kz, : aluminum y Ex Ey Ez x 500 nm Veerman, Otter, Kuipers, van Hulst, Appl. Phys. Lett. 74, 3115 (1998) Shear force feedback: molecular scale topography Steps on graphite (HOPG) Feedback loop: A0 Df piezo 3 x 3 mm w0 Tuning fork 32 kHz Q ~ 500 Lateral movement, A0 ~ 0.1 nm ~ 0.8 nm step ~ 3 mono-atomic steps DNA on mica sample Feedback on phase Tip -sample < 5 nm RMS ~ 0.1 nm 1.7 x 1.7 mm DNA width 14 nm height 1.4 nm Rensen, Ruiter, West, van Hulst, Appl. Phys. Lett. 75 1640 (1999) Ruiter, Veerman, v/d Werf, van Hulst, Appl. Phys. Lett. 71 28 (1997) van Hulst, Garcia-Parajo, Moers, Veerman, Ruiter, J. Struct. Biol. 119, 222, (1997) Perylene orange in PMMA 100 nm 0o 90o 1 mm Ruiter, Veerman, Garcia-Parajo, van Hulst, J. Phys. Chem. 101 A, 7318 (1997) Single molecular mapping of the near-field distribution counts / pixel DiIC18 molecules in 10 nm PMMA layer 1.2 x 1.2 mm2; 3 nm/pix; 3 ms/pix c b a 120 45 nm FWHM 80 40 0 0 400 800 distance (nm) 1200 Veerman, Garcia-Parajo, Kuipers, van Hulst, J. Microscopy 194, 477 (1999) Data from Kobus Kuipers and Niek van Hulst et al. Mapping the near field of the probe NFO for Single Molecule Detection : Reduced excitation volume, high resolution, low background kcounts/s 50 S/B 20 40 30 FWHM = 75 nm 20 10 0 0.0 0.5 1.0 1.5 2.0 2.5 Single DiD molecule in 30 nm polystyrene with 70 nm aperture probe 3.0 lateral scan [mm] van Hulst, Veerman, Garcia-Parajo, Kuipers. J. Chem. Phys. 112, 7799 (2000) a Optical discrimination of individual molecules separated by nm mutual distance a 90o emission b 45 ± 2 nm b e c c d 0o emission Sample area: 440 x 440 nm2 Aperture diameter: 70 nm Mutual distance: < 10 nm 0 200 400 nm van Hulst, Veerman, Garcia-Parajo, Kuipers. J. Chem. Phys. 112, 7799 (2000) Data from Kobus Kuipers and Niek van Hulst et al. Time-resolved near-field scanning tunneling microscopy 120 fs pulses coupled into the PhCW Two arms of the interferometer equal in length gives temporal overlap on the detector Data from Kobus Kuipers and Niek van Hulst et al. A light pulse caught in time and space 40 nm high ridge waveguide 239.5 x 7.62 mm Pulse envelope 239.5 x 7.62 mm Fixed time delay TE00 pulse, l =1300 nm duration : 120 fs Pulse caught in 1 position