Transcript Slide 1

TWO-PORT NETWORKS

TWO-PORT NETWORK- Definition A port : an access to a network and consists of two terminals

One-port network

I + V  I

Linear network

- One pair of terminal - Current entering the port = current leaving the port

Input port

TWO-PORT NETWORK- Definition

Two-port network

+ V 1  I 1 I 1

Linear network

I 2 I 2 + V 2 

Output port

- Two pairs of terminal : two-port - Current entering a port = current leaving a port - V 1 ,V 2 , I 1 and I 2 are related using two-port network

parameters

- In SEE 1023 we will study on four sets of these parameters

Impedance parameters Hybrid parameters Admittance parameters Transmission parameters

TWO-PORT NETWORK

Why ?

Typically found in communications, control systems, electronics - used in modeling, designing and analysis Know how to model two-port network will help in the analysis of larger network - two port network treated as ‘black box’

TWO-PORT NETWORK

Impedance parameters (z parameters)

V 1  z 11 I 1  z 12 I 2 V 2  z 21 I 1  z 22 I 2   V V 2 1      z 11 z 21 z 12 z 22     I I 2 1   Parameters can be determined by calculations or measurement

V 1 z 11 and z 21 I 1 TWO-PORT NETWORK

Impedance parameters (z parameters)

V 1  z 11 I 1  z 12 I 2 V 2  z 21 I 1  z 22 I 2 I 2 + V 2  Output port : open I 2 = 0 Input port : Apply voltage source V V 1 2   z 11 I 1 z 21 I 1 z 11  V 1 I 1 I 2  0 z 21  V 2 I 1 I 2  0

z 12 and z 22 V 1 I 1 =0 + V 1  TWO-PORT NETWORK

Impedance parameters (z parameters)

V 1  z 11 I 1  z 12 I 2 V 2  z 21 I 1  z 22 I 2 I 2 V 2 Input port : opened I 1 = 0 Output port : Apply voltage source V V 1 2   z 12 I 2 z 22 I 2 z 12  V 1 I 2 I 1  0 z 22  V 2 I 2 I 1  0

TWO-PORT NETWORK

Impedance parameters (z parameters)

V 1  z 11 I 1  z 12 I 2 V 2  z 21 I 1  z 22 I 2 Equivalent circuit based on these equations: I 1 + V 1  z I 11 2 z 12 +  +  z 22 I 1 z 21 I 2 + V 1 

V TWO-PORT NETWORK

Impedance parameters (z parameters)

V 1  z 11 I 1  z 12 I 2 V 2  z 21 I 1  z 22 I 2 Linear network with NO dependent sources:

RECIPROCAL

• Voltage source and ideal ammeter connected to the ports are interchangeable

ammeter

Reciprocal network A I I A Reciprocal network V

TWO-PORT NETWORK

Impedance parameters (z parameters)

V 1  z 11 I 1  z 12 I 2 V 2  z 21 I 1  z 22 I 2 Linear network with NO dependent sources:

RECIPROCAL

• • • Voltage source and ideal ammeter connected to the ports are interchangeable z 12 = z 21 Can be replaced with T-equivalent circuit: Z 11 -z 12 Z 22 -z 12 + V 1  Z 12 + V 2 

TWO-PORT NETWORK

Impedance parameters (z parameters)

V 1  z 11 I 1  z 12 I 2 V 2  z 21 I 1  z 22 I 2 Linear network with NO dependent sources:

RECIPROCAL

Network with mirror-like symmetry:

SYMMETRICAL

z 11 = z 22

TWO-PORT NETWORK

Impedance parameters (z parameters)

V 1  z 11 I 1  z 12 I 2 V 2  z 21 I 1  z 22 I 2 Linear network with NO dependent sources:

RECIPROCAL

Network with mirror-like symmetry:

SYMMETRICAL

If the two-port network is reciprocal and symmetrical, only 2 parameters need to be determined

TWO-PORT NETWORK

Admittance parameters (y parameters)

I 1  y 11 V 1  y 12 V 2 I 2  y 21 V 1  y 22 V 2   I I 2 1      y y 11 21 y 12 y 22     V V 2 1   Parameters can be determined by calculations or measurement

y 11 and y 21 I 1 + V 1  TWO-PORT NETWORK

Admittance parameters (y parameters)

I 1  y 11 V 1  y 12 V 2 I 2  y 21 V 1  y 22 V 2 I 2 + V 2 = 0  Output port : shorted V 2 = 0 Input port : Apply current source I I 1 2   y 11 V 1 y 21 V 1 y 11  I 1 V 1 V 2  0 y 21  I 2 V 1 V 2  0

y 12 and y 22 I 1 + V 1 =0  TWO-PORT NETWORK

Admittance parameters (y parameters)

I 1  y 11 V 1  y 12 V 2 I 2  y 21 V 1  y 22 V 2 I 2 + V 2  Input port : shorted V 1 = 0 Output port : Apply current source I I 1 2   y 12 V 2 y 22 V 2 y 12  I 1 V 2 V 1  0 y 22  I 2 V 2 V 1  0

TWO-PORT NETWORK

Admittance parameters (y parameters)

I 1  y 11 V 1  y 12 V 2 I 2  y 21 V 1  y 22 V 2 Equivalent circuit based on these equations: I 1 + V 1  y 11 y 12 V 2 y 21 V 1 y 22 + I 2 V 2 

TWO-PORT NETWORK

Admittance parameters (y parameters)

I 1  y 11 V 1  y 12 V 2 I 2  y 21 V 1  y 22 V 2 Linear network with NO dependent sources:

RECIPROCAL

• • • Current source and ideal voltmeter connected to the ports are interchangeable

y 12

Can be replaced with  -equivalent circuit: + V 1 

= y 21

y 11 + y 12 -y 12 y 22 + y 12 + V 2 

TWO-PORT NETWORK

Admittance parameters (y parameters)

I 1  y 11 V 1  y 12 V 2 I 2  y 21 V 1  y 22 V 2 Network with mirror-like symmetry:

SYMMETRICAL : y 11 = y 22

TWO-PORT NETWORK

Hybrid parameters (h parameters)

V 1  h 11 I 1  h 12 V 2 I 2  h 21 I 1  h 22 V 2   I V 1 2      h 11 h 21 h 12 h 22     I 1 V 2   Some two port network cannot be expressed in terms z or y parameters but can be expressed in terms of

h

parameters Parameters can be determined by calculations or measurement

h 11 and h 21 I 1 + V 1  TWO-PORT NETWORK

Hybrid parameters (h parameters)

V 1  h 11 I 1  h 12 V 2 I 2  h 21 I 1  h 22 V 2 I 2 + V 2 = 0  Output port : shorted V 2 = 0 Input port : Apply current source V I 2 1   h 11 I 1 h 21 I 1 h 11  V 1 I 1 V 2  0 (  ) h 21  I 2 I 1 V 2  0

h 12 and h 22 I 1 =0 + V 1  TWO-PORT NETWORK

Hybrid parameters (h parameters)

V 1  h 11 I 1  h 12 V 2 I 2  h 21 I 1  h 22 V 2 I 2 V 2 Input port : opened I 1 = 0 Output port : Apply voltage source V I 2 1   h 12 V 2 h 22 V 2 h 12  V 1 V 2 I 1  0 h 22  I 2 V 2 I 1  0 (S)

TWO-PORT NETWORK

Hybrid parameters (h parameters)

V 1  h 11 I 1  h 12 V 2 I 2  h 21 I 1  h 22 V 2 Equivalent circuit based on these equations: + I 1 h 11 V  1 h 11 V 2 +  h 21 I 1 h 22 I 2 + V 2 

TWO-PORT NETWORK

Hybrid parameters (h parameters)

V 1  h 11 I 1  h 12 V 2 I 2  h 21 I 1  h 22 V 2 Linear network with NO dependent sources:

RECIPROCAL

• • Current source and ideal voltmeter connected to the ports are interchangeable

h 12 = -h 21

TWO-PORT NETWORK

Hybrid parameters (h parameters)

V 1  h 11 I 1  h 12 V 2 I 2  h 21 I 1  h 22 V 2 Network with mirror-like symmetry:

SYMMETRICAL : h 11 h 22 – h 12 h 21 = 1

TWO-PORT NETWORK

Transmission parameters (t parameters)

V 1  AV 2  BI 2 I 1  CV 2  DI 2   V 1 I 1      A C B D     V  I 2 2   Used to express the

sending

end voltage an current in terms of

receiving

end voltage and current I 1 -I 2

sending end

+ V 1 

Linear network

+ V 2 

receiving end

I 1 I 2

TWO-PORT NETWORK

Transmission parameters (h parameters)

V 1  AV 2  BI 2 I 1  CV 2  DI 2 V 1 Output port : opened I 2 = 0  AV 2 A  V 1 V 2 I 2  0 I 1  CV 2 C  I 1 V 2 I 2  0 V 1 Output port : shorted V 2 = 0   BI 2 B   V 1 I 2 V 2  0 I 1   DI 2 For

RECIPROCAL

network, AD – BC = 1 D   I I 2 1 V 2  0 For

SYMMETRICAL

network, A = D

TWO-PORT NETWORK

Relationships between parameters

If a two-port network can be presented by different set of parameters, then there exists relationships between parameters.

e.g. relationships between z and y parameters:   V V 2 1      z z 11 21 z 12 z 22     I I 2 1     I I 2 1      z z 11 21 z 12 z 22    1   V V 2 1   We know that Therefore     I I 2 1   y y 11 21    y 11 y 21 y 12 y 22    y 12 y 22     V V 2 1     z 11 z 21 z 12 z 22    1

TWO-PORT NETWORK

Relationships between parameters

Therefore, y 11  z 22  z     z z 22 21  z  z z 11 12   y 12   z 12  z where  z  z 11 z 22  z 12 z 21 y 21   z 21  z y 22  z 11  z The conversion formulae can be obtained from the conversion table e.g. on page 869 of Alexander/Sadiku   z z 11 21 z 12 z 22    1

TWO-PORT NETWORK

Relationships between parameters

TWO-PORT NETWORK

Interconnection of networks

Complex large network can be modeled with interconnected two-port networks • Simplify the analysis /synthesis • Simplify the design Parameters of interconnected two-port networks can be obtained easily: depending on the type of parameters and type of connections: • Series: z parameters • Parallel: y parameters • Cascade: transmission parameters

+ I 1a + V 1a  V 1  I 1b + V 1b  z a z b TWO-PORT NETWORK

Interconnection of networks

Series: z parameters I 2a + V 2a  + V 2 I 2b + V 2b   I 1 + V 1  z + V 2  I 2 [z] = [z a ] + [z b ]

I 1 + V 1  I 1a + V 1a  I 1b + V 1b  y a y b TWO-PORT NETWORK

Interconnection of networks

Parallel: y parameters I 2a + V 2a  I 2b + V 2b  I 2 + V 2  I 1 + V 1  y + V 2  I 2 [y] = [y a ] + [y b ]

I 1 + V 1  I 1a + V 1a  TWO-PORT NETWORK

Interconnection of networks

t a Cascade: t parameters -I 2a + V 2a  I 1b + V 1b  t b -I 2b + V 2b  -I + V 2  2 I 1 + V 1  t [t] = [t a ][t b ] -I 2 + V 2 