Transcript Slide 1

EU FET: QAP
EPSRC
1-phot
Introduction to Photonic
Quantum
Logic
QUAMP Summer School SEPT 2006
J. G. Rarity
University of Bristol
[email protected]
Bristol: Daniel Ho, J. Fulconis, J. Duligall, C. Hu, R. Gibson, O Alibart, J. O’Brien
Bath: William Wadsworth,
Sheffield: M. Skolnick, D. Whittaker, M. Fox, J. Timpson
www.bris.ac.uk
HP Labs: W. Munro, T. Spiller, K. Harrison
FP6:IP
SECOQC
www.ramboq.org
Structure
–
–
–
–
–
–
–
–
What is light?
Decoherence of photons
Single photon detection
Encoding bits with single photons and single bit manipulation.
Linear logic
Entangled state sources
Single photon sources
Quantum Cryptography
The electro-magnetic spectrum
λ=1.5um
Eph=0.8eV
λ=0.33um
Eph=4eV
Optical Photon energy
Eph=hf>>KT
Particle
like
Wave-like during propagation
Particle
like
V+
Decoherence of photons: associated with loss
• Storage time in fibre
5μs/km, loss 0.17 dB/km
(96%)
• Polarised light from
stars==Storage for 6500
years!
Photon counting using avalanche photodiodes
Photon absorbed
Photon is absorbed in the avalanche region to create an electron hole pair
Electron and hole are accelerated in the high electric field
Collide with other electrons and holes to create more pairs
With high enough field the device breaks down when one photon is absorbed
Commercial actively quenched
detector module using Silicon
APD
Efficiency ~70% (at 700nm)
Timing jitter~400ps (latest <50ps)
Dark counts <50/sec
www.perkinelmer.com
InGaAs avalanche detectors:
Gated modules operation at 1550nm
Lower efficiency ~20-30%
Higher dark counts ~1E4/sec
Afterpulsing (10 us dead time)
www.idquantique.com
Other detectors
• The Geiger mode avalanche diodes count one photon then
switch off for a dead time before they are ready to detect
another-NOT PHOTON NUMBER RESOLVING
• Photon number resolving detectors may become available
in the near future:
– Cryogenic superconducting to resistive transitions Jaspan et al
APL 89, 031112, 2006
– Impurity transitions in heavily doped silicon (Takeuchi)
Interference effects
with single photons Mirror
D(1)
U
Single photon can only be detected in
one detector
However interference pattern built
up from many individual counts
P. Grangier et al, Europhysics Letters 1986
In the interferometer we have superposition state
  1
( 1 U  e i 1 L )
2
D(0)
Phase
pla te

Beamsplitter
50:50
L Mirror
D(0)
Count
Rate
0
Thickness
of phase plate
After the interferometer:
  1
r i
2
( 1 U  e i 1 L )
2
,t  1

2
D(1)

Mirror
 out  1 (1  iei ) 0  (i  e i ) 1
2
In general

2
Detectionprobability 
2
  0  1
P (0)  (1  sin ) / 2
P (1)  (1  sin ) / 2

2
1

D(0)
Phase
pla te
Beamsplitter
50:50
Mirror
D(0)
Count
Rate
0
Thickness
of phase plate
Encoding one bit per photon and single
qubit rotations
Encoding single photons using two polarisation modes
Superposition states of ‘1’ and ‘0’
|Ψ>= α|0> +β|1>
5
10
Probability amplitudes α , β
4
Gated count rate
Detection Probability: |α|2
10
3
10
2
10
-20 0
20 40 60 80 100 120 140 160 180 200
/2 plate angle 
Single photon encoding showing QBER<5.10-4
(99.95% visibility)
Control
a c| H> + bc| V>
2QUBIT logic:
Photonic CNOT Gate.
D(1)
Target
a t| H> + bt| V>
QR is a quantum polarisation rotator
Rotates polarisation if control is vertically polarised
Does nothing if control is Horizontally polarised


 in   0 t   1 t c 0 c  c 1 c

out
PBS
D(0)

 c 0 t 0 c  c 1 t 1 c  c 1 t 0 c   c 0 t 1 c
Requires non-linearity at single photon level:
Atoms: Turchette and Kimble PRL1995,
Solid state: J. P. Reithmaier/ A. Forchel, NATURE 432, Nov 2004.
Bennett and Brassard 1984
Secure key exchange using quantum cryptography
Sends
no. bit
pol.
1
1
2
0
3
0
4
1
5
1
6
0
7
1
…
1004 0
1005 1
….
3245 1
…
Receives
45
45
0
45
0
45
45
45
0
45
no. Bit
246 1
1004 0
2134 0
3245 0
4765 1
5698 0
Pol.
45
45
0
0
0
45
Multi-qubit gates
Hong Ou Mandel
interference effect
Hong- Ou - MandelDip
in  1 t 1 c
1 t  t 1 t  ir 1 c : 1 c  t 1 c  ir 1 t

out  (t 2  r 2 ) 1 t 1 c  irt 1,1 t  irt 1,1 c

Hong, Ou, Mandel
PRL 1987
KLM gate
in  1 t 1 c

out  (t 2  r 2 ) 1 t 1 c  irt 1,1 t  irt 1,1 c
1 1 t 1 c
3

Demonstration of an all-optical quantum controlled-NOT gate
Knill et al Nature 409, 46–52 (2001)
J L O’Brien et al, Nature 426, 264 (2003) / quant-ph/0403062
Polarisation KLM gate
Parity Measurement
Parity and conditional CNOT
Knill et al Nature 409, 46–52 (2001)
Pittman et al (2002) PRL 88, 257902
Not 100% efficient but
Up to 50%
Notes
Target V-->H+V Control V-->H+V
Parity-->HH+VV -45--> H(H+V)-V(H-V)
Confirm click is H-->(H-V) out -45--> |H>
Confirm click is V-->(H+V) out -45--> |V>
Target V-->H+V Control H-->H-V
Parity-->HH-VV -45--> H(H+V)+V(H-V)
Confirm click is H-->(H+V) out -45--> |V>
IST-2001-38864: RAMBOQ
A ‘scalable’ 2-qubit CNOT gate
In the proposal
Actual realisation
Truth table
Fidelity ~0.8
S. Gasparoni, J-W Pan, P. Walther, T. Rudolph, and A. Zeilinger, Phys. Rev. Lett. 93, 020504 (2004)
Optical Cluster State Computing
P. Walther et al Nature 434, 169-176 (2005)