Transcript Slide 1
EU FET: QAP EPSRC 1-phot Introduction to Photonic Quantum Logic QUAMP Summer School SEPT 2006 J. G. Rarity University of Bristol [email protected] Bristol: Daniel Ho, J. Fulconis, J. Duligall, C. Hu, R. Gibson, O Alibart, J. O’Brien Bath: William Wadsworth, Sheffield: M. Skolnick, D. Whittaker, M. Fox, J. Timpson www.bris.ac.uk HP Labs: W. Munro, T. Spiller, K. Harrison FP6:IP SECOQC www.ramboq.org Structure – – – – – – – – What is light? Decoherence of photons Single photon detection Encoding bits with single photons and single bit manipulation. Linear logic Entangled state sources Single photon sources Quantum Cryptography The electro-magnetic spectrum λ=1.5um Eph=0.8eV λ=0.33um Eph=4eV Optical Photon energy Eph=hf>>KT Particle like Wave-like during propagation Particle like V+ Decoherence of photons: associated with loss • Storage time in fibre 5μs/km, loss 0.17 dB/km (96%) • Polarised light from stars==Storage for 6500 years! Photon counting using avalanche photodiodes Photon absorbed Photon is absorbed in the avalanche region to create an electron hole pair Electron and hole are accelerated in the high electric field Collide with other electrons and holes to create more pairs With high enough field the device breaks down when one photon is absorbed Commercial actively quenched detector module using Silicon APD Efficiency ~70% (at 700nm) Timing jitter~400ps (latest <50ps) Dark counts <50/sec www.perkinelmer.com InGaAs avalanche detectors: Gated modules operation at 1550nm Lower efficiency ~20-30% Higher dark counts ~1E4/sec Afterpulsing (10 us dead time) www.idquantique.com Other detectors • The Geiger mode avalanche diodes count one photon then switch off for a dead time before they are ready to detect another-NOT PHOTON NUMBER RESOLVING • Photon number resolving detectors may become available in the near future: – Cryogenic superconducting to resistive transitions Jaspan et al APL 89, 031112, 2006 – Impurity transitions in heavily doped silicon (Takeuchi) Interference effects with single photons Mirror D(1) U Single photon can only be detected in one detector However interference pattern built up from many individual counts P. Grangier et al, Europhysics Letters 1986 In the interferometer we have superposition state 1 ( 1 U e i 1 L ) 2 D(0) Phase pla te Beamsplitter 50:50 L Mirror D(0) Count Rate 0 Thickness of phase plate After the interferometer: 1 r i 2 ( 1 U e i 1 L ) 2 ,t 1 2 D(1) Mirror out 1 (1 iei ) 0 (i e i ) 1 2 In general 2 Detectionprobability 2 0 1 P (0) (1 sin ) / 2 P (1) (1 sin ) / 2 2 1 D(0) Phase pla te Beamsplitter 50:50 Mirror D(0) Count Rate 0 Thickness of phase plate Encoding one bit per photon and single qubit rotations Encoding single photons using two polarisation modes Superposition states of ‘1’ and ‘0’ |Ψ>= α|0> +β|1> 5 10 Probability amplitudes α , β 4 Gated count rate Detection Probability: |α|2 10 3 10 2 10 -20 0 20 40 60 80 100 120 140 160 180 200 /2 plate angle Single photon encoding showing QBER<5.10-4 (99.95% visibility) Control a c| H> + bc| V> 2QUBIT logic: Photonic CNOT Gate. D(1) Target a t| H> + bt| V> QR is a quantum polarisation rotator Rotates polarisation if control is vertically polarised Does nothing if control is Horizontally polarised in 0 t 1 t c 0 c c 1 c out PBS D(0) c 0 t 0 c c 1 t 1 c c 1 t 0 c c 0 t 1 c Requires non-linearity at single photon level: Atoms: Turchette and Kimble PRL1995, Solid state: J. P. Reithmaier/ A. Forchel, NATURE 432, Nov 2004. Bennett and Brassard 1984 Secure key exchange using quantum cryptography Sends no. bit pol. 1 1 2 0 3 0 4 1 5 1 6 0 7 1 … 1004 0 1005 1 …. 3245 1 … Receives 45 45 0 45 0 45 45 45 0 45 no. Bit 246 1 1004 0 2134 0 3245 0 4765 1 5698 0 Pol. 45 45 0 0 0 45 Multi-qubit gates Hong Ou Mandel interference effect Hong- Ou - MandelDip in 1 t 1 c 1 t t 1 t ir 1 c : 1 c t 1 c ir 1 t out (t 2 r 2 ) 1 t 1 c irt 1,1 t irt 1,1 c Hong, Ou, Mandel PRL 1987 KLM gate in 1 t 1 c out (t 2 r 2 ) 1 t 1 c irt 1,1 t irt 1,1 c 1 1 t 1 c 3 Demonstration of an all-optical quantum controlled-NOT gate Knill et al Nature 409, 46–52 (2001) J L O’Brien et al, Nature 426, 264 (2003) / quant-ph/0403062 Polarisation KLM gate Parity Measurement Parity and conditional CNOT Knill et al Nature 409, 46–52 (2001) Pittman et al (2002) PRL 88, 257902 Not 100% efficient but Up to 50% Notes Target V-->H+V Control V-->H+V Parity-->HH+VV -45--> H(H+V)-V(H-V) Confirm click is H-->(H-V) out -45--> |H> Confirm click is V-->(H+V) out -45--> |V> Target V-->H+V Control H-->H-V Parity-->HH-VV -45--> H(H+V)+V(H-V) Confirm click is H-->(H+V) out -45--> |V> IST-2001-38864: RAMBOQ A ‘scalable’ 2-qubit CNOT gate In the proposal Actual realisation Truth table Fidelity ~0.8 S. Gasparoni, J-W Pan, P. Walther, T. Rudolph, and A. Zeilinger, Phys. Rev. Lett. 93, 020504 (2004) Optical Cluster State Computing P. Walther et al Nature 434, 169-176 (2005)