Transcript Document
The Coordination Chemistry of Bismuth(III) Complexes and Other Heavy Metals with Biorelevant Ligands March 27, 2005 Melanie Eelman Overview • Medicinal relevance of bismuth chemistry • Pepto-Bismol • De-Nol • Use of thiolate anchors on hetero-bifunctional ligands • Study interactions of bismuth with “weak” donors • Use of electrospray ionization mass spectrometry (ESI-MS) • Identify metal-ligand complexes • Characterization of interactions between bismuth and other heavy metals (e.g. lead, arsenic) and key biomolecules Bismuth: 250 Years of Medicinal Use Bismuth(III) Salts: • nitrate • oxide • salicylate • citrate • tartrate • malate • oxalate • lactate Treatments for: • syphilis • bacterial infections • colitis • cancer • hypertension • diarrhea • dyspepsia • gastric/duodenal ulcers P.J. Sadler, H. Li, H. Sun, Coord. Chem. Rev., 1999, 185-186, 689 G.G. Briand, N. Burford, Chem. Rev., 1999, 99, 2601. Bismuth Pharmaceutical Agents Colloidal Bismuth Subcitrate (CBS) O O O K O O O Bi Bi O O O Active Ingredient of De-Nol O O K O O O Herrmann, Inorg. Chem., 1991, 30, 2579; Asato, Inorg. Chem., 1991, 30, 4210; Herrmann, Z. Kristallogr., 1992, 198, 25; Asato, Chem. Lett, 1992, 1967; Asato, Inorg. Chem., 1993, 32, 5322; Asato, Inorg. Chem., 1995, 34, 2447; Sadler, Dalton Trans., 1996, 2417 Bismuth Subsalicylate (BSS) O O N OH Bi O Active Ingredient of Pepto-Bismol O N O Bi O O O O O O O Bi O N OH N OH Dimeric in the solid state J.H. Thurston, E.M. Marlier, K.H. Whitmire, Chem. Commun., 2002, 2834. Developing the Coordination Chemistry of Bismuth • Mechanisms of bioactivity of bismuth is unknown • Chemistry of bismuth is ill-defined • Low solubility (i.e. BSS) • Facile hydrolysis of Bi-element bonds Objective: Development of synthetic approaches to systematic series of bismuth compounds and definitive characterisation Bismuth is thiophilic Use of ligands containing sulfur Thiophilicity Preference for certain atoms (heavy metals) to form strong bonds with sulfur Explained by: hard-soft acid-base theory LUMO LUMO HOMO HOMO A A-B B Cl Na Hard R. G. Pearson, J.Am.Chem.Soc. 1963, 85 , 3533 A A-B Bi3 B -SR Soft Dithiolate Ligands Comprehensive characterization of a series of bismuth-dithiolate compounds: Cl HS n Bi Cl SH Cl Cl Cl Bi Bi Bi S S S S S Cl Cl S Bi S Cl S S Bi S O S S X 2 3 HS S X Bi S Bi Bi X SH S S S X S 2 Bi S + S S HS S Bi S S S SH S S S S Bi S P. Powell, J.Chem.Soc.(A) 1968, 2587. L. Agocs, N. Burford, T. S. Cameron, J. M. Curtis, J. F. Richardson, K. N. Robertson, G.B. Yhard JACS 1996, 126, 895. Thiolate Anchored Hetero-Bifunctional Ligands Investigate interactions of “weak” donors (E) with bismuth Cl S KS Bi S S E Bi S E E = OH S E = NMe2 E = OH, NMe2 E = C(O)OMe E = NH2 Cl S Bi S S S KS E S E Bi S S E = NH2, C(O)OR L. Agocs, G.G. Briand, N. Burford, M.D. Eelman, N. Aumeerally, D. MacKay, K.N. Robertson, T.S. Cameron, Can. J. Chem., 2003, 81, 632. Hetero-Bifunctional Thiolate Ligands S S E Bi Cl Cl E Cl Bi S E S E E Bi S S E E = NR2 E = OH E is a "weak" donor OR S O Bi Cl Can correlate isolated complexes to those identified using ESI-MS Cl OR O Cl OR RO S Bi S O RO S O O Bi S S O RO E = C(O)OR; ester functional group R = Me, Et L. Agocs, G.G. Briand, N. Burford, T.S. Cameron, W. Kwiatkowski, K.N. Robertson Inorg. Chem. 1997, 36, 2855. G.G. Briand, N. Burford, T.S. Cameron, W. Kwiatkowski, J.Am.Chem.Soc. 1998, 120, 11374. G.G. Briand, N. Burford, M.D. Eelman, T.S. Cameron, K.N. Robertson Inorg. Chem. 2003, 42, 3136. The Importance of Electrospray Ionization Mass Spectrometry ‘ESI-MS’ • Bismuth compounds hard to characterize • NMR • EI-MS • Advantages of ESI-MS • Dilute solutions • Can handle ill-defined reaction mixtures: “in situ ESI-MS” • Intact metal-ligand complexes Electrospray Ionization (ESI) Desolvation Produces gaseous ionized molecules from a liquid solution by creating a spray of droplets in the presence of a strong electric field Needle Liquid Flow + ++- - + - - + -+ +++ Taylor Cone -+ -++ - + -+ -++ - + Coulombic Explosion Spray Shield + + + - + - - + - - + Capillary + + Desolvated Ions End Plate Synthesis of the Mono(Ester-Thiolate) Complex of Bismuth OEt OMe BiCl3 + S Absolute EtOH HS O + HCl Bi O Cl methyl thioglycolate (MTG) Cl 25% Yield Transesterification occurring: OEt OMe S O S + EtOH Bi Cl Cl O + MeOH Bi Cl Cl Acid catalyzed and driven to completion by the use of excess ethanol G.G. Briand, N. Burford, M.D. Eelman, T.S. Cameron, K.N. Robertson Inorg. Chem. 2003, 42, 3136. ESI-MS of BiCl3 and MTG in Absolute Ethanol OR O S S OR Bi O OR OR R = Et R = Et R = Et O S O Na S S RO Bi Na S Bi O O S O Cl OR OR RO OR O OR S O S S Bi O O Bi S Cl R = Et OR Peak assignments confirmed by MS/MS G.G. Briand, N. Burford, M.D. Eelman, T.S. Cameron, K.N. Robertson Inorg. Chem. 2003, 42, 3136. Bis(Methylester-Thiolato) Bismuth Complex OMe OMe BiCl3 + 2 HS 95% EtOH O O S Bi methyl thioglycolate (MTG) O Cl OR + 2HCl S OMe 47% Yield Polymeric in solid state OR S OR O O Bi S S OR OR S Bi O O S O O O S Na RO O O Bi S RO OR S OR S Bi O S OR G.G. Briand, N. Burford, M.D. Eelman, T.S. Cameron, K.N. Robertson Inorg. Chem. 2003, 42, 3136. Tris(Methylester-Thiolato) Bismuth Complex OMe MeO OMe BiCl3 +3 HS + 3KOH S O 95% EtOH O Bi S O + 3H2O S O methyl thioglycolate (MTG) MeO 26% Yield OMe OMe OMe O S S Bi O Bi O S S O S MeO O Model of CBS! S O OMe OMe O O O K O O O Bi Bi O O O O CBS O K O O O G.G. Briand, N. Burford, M.D. Eelman, T.S. Cameron, K.N. Robertson Inorg. Chem. 2003, 42, 3136. E. Asato, K. Katsura, M. Mikuriya, T. Fujii, J. Reedijk, Inorg.Chem. 1993, 32 5322-5329. ESI-MS ofBiCl3 and 3 (MTG + KOH) in 95% Ethanol OR O S A O OR S R = Me Bi O RO S O OR RO S S A = K; R = Me A =Na; R = Me K O Bi O OR S OR S O Bi O S S O RO OR O R = Me S S Bi O RO OR Peak assignments confirmed by ESI-MS/MS G.G. Briand, N. Burford, M.D. Eelman, T.S. Cameron, K.N. Robertson Inorg. Chem. 2003, 42, 3136. Tris(Methylthiosalicylato) Bismuth(III) Complex O MeO OMe BiCl3 + 3 95% EtOH + 3KOH Bi S SH OMe S O O S + 3H2O O methylthiosalicylate (MTS) MeO 66% Yield 542.9 MeO MeO O O S Bi S Bi S O S O MeO OMe S O 356.9 MeO 732.9 A = Na 212.0 372.9 407.1 N. Burford, M.D. Eelman, T.S. Cameron, Chem.Commun. 2002, 1402 749.1 616.9 A=K A Model of ‘BSS’ O O OMe MeO Bi O O OMe S O Bi S OH Bi S O MeO O ‘BSS’ S S O O S OMe MeO c.f. OH HO N OH OH N HO N O O Bi O O OO N OH OO O O Bi O O N O N O Bi O O HO N. Burford, M.D. Eelman, T.S. Cameron, Chem.Commun. 2002, 1402 J.H. Thurston, E.M. Marlier, K.H. Whitmire, Chem. Commun., 2002, 2834. O O O O Bi O N O N OH ESI-MS Identification of Bismuth Complexes Containing L-Cysteine and Glutathione NH2 O L-cysteine = OH SH SH Tripeptide: O O O H N Glutathione = HO N H NH2 BSS BiCl3 Bi(NO3)3 OH O L-cysteine + n glutathione n = 1-3 Cys 50% EtOH or H2O ESI-MS of BSS and L-Cysteine in Aqueous Solution O O O 1:1 NH2 Bi S H3N O Bi O S NH3 S O Peak assignments confirmed by MS/MS Burford, N.; Eelman, M.D.; Mahony, D.; Morash, M. Chem. Commun. 2003, 146-147. 1:2 ESI-MS of Bi(NO3)3 and Glutathione in Aqueous Solution O OH 1:1 O H2N O Bi NH O O NH S O O Bi H2N NH S HO O NH2 HO O O O S NH O NH O 1:2 NH Bi O NH S OH O O Peak assignments confirmed by ESI-MS/MS Burford, N.; Eelman, M.D.; Mahony, D.; Morash, M. Chem. Commun. 2003, 146-147. NH2 OH ESI-MS Data for Mixtures of Bi(NO3)3 and an Amino Acid in 50% EtOH Peak assignments confirmed by MS/MS Amino Acid m/z Rel. Int. (%) Assignment Bi:Am Amino Acid m/z Rel. Int. (%) Assignment Bi:Am His 516.9 5 1:2 Cys 775.9 5 2:3 Thr 444.9 10 1:2 654.9 20 2:2 Met 881.7 20 2:3Na 449.0 45 1:2 859.7 40 2:3 328.0 100 1:1 710.7 10 2:2 818.0 5 2:3 526.9 30 1:2Na 682.8 10 2:2 504.9 65 1:2 477.0 100 1:2 355.9 35 1:1 342.0 55 1:1 471.1 5 1:2 498.9 10 1:2 Asn Hcys Gln Burford, N.; Eelman, M.D.; LeBlanc, W.G. Can. J. Chem. 2004, 82, 1254-1259. Briand, G.G.; Burford, N.; Eelman, M.D.; Aumeerally, N.; Chen, L.; Cameron, T.S.; Robertson, K.N. Inorg. Chem. 2004, 43, 6495. Bi:Am Assignments: Structural Possibilities Am = Conjugate base of the amino acid O O NH2 NH2 O O R R Bi Bi 1:2 O R 1:1 O O H N H2N H2N Bi O R O R R Bi H2N O Bi R O NH2 O O R O 2:2 O O N H2 2:3 Bi Facilitating Interactions of Other Amino Acids With Bismuth Hypothesis: • L-cysteine kinetically will stabilize coordination of amino acid conjugates to bismuth General Procedure: Bi(NO3)3 + Cys + Am 50% EtOH Am = Conjugate base of the amino acid Facilitating Interactions of Other Amino Acids With Bismuth Using L-Cysteine Peak assignments confirmed by MS/MS Amino Acid m/z Assignment Bi:Cys:Am Amino Acid m/z Assignment Bi:Cys:Am His 482.9 1:1:1 HCys 803.8 2:1:2 362.0 1:0:1 790.1 2:2:1 859.1 2:2:1 462.9 1:1:1 532.2 1:1:1 786.7 2:2:1 Tyr 508.9 1:1:1 459.9 1:1:1 Ser 760.2 2:2:1 339.0 1:0:1 433.1 1:1:1 800.8 2:2:1 773.7 2:2:1 473.9 1:1:1 446.9 1:1:1 800.7 2:2:1 803.8 2:2:1 473.9 1:1:1 476.9 1:1:1 Arg 502.0 1:1:1 Pro 443.2 1:1:1 Trp Thr Met Asn Gln Lys Amino Acids That Do Not Interact With Bismuth General Structure: O H3N H C R C O Amino Acid Gly -R Group -H Ala Val Leu Ile Phe Asp Glu -CH3 -CH(CH3)2 -CH2CH(CH3)2 -CH(CH3)CH(CH3)2 -CH2Ph -CH2CO2H -CH2CH2CO2H ESI-MS of Bi(NO3)3 and Glutathione in Aqueous Solution O OH 1:1 O H2N O Bi NH O O NH S O O Bi H2N NH S HO O NH2 HO O O O S NH O NH O 1:2 NH Bi O NH S OH O O -Glu Burford, N.; Eelman, M.D.; Mahony, D.; Morash, M. Chem. Commun. 2003, 146-147. NH2 OH The First Bismuth Complex Containing a Biomolecule NH2 Bi(NO3)3.5H2O + O + OH Ligand Stabilisation SH N N 50% EtOH H3N S O O H2O N Bi N O N O O N O O O Yield: 31% Briand, G.G.; Burford, N.; Eelman, M.D.; Aumeerally, N.; Chen, L.; Cameron, T.S.; Robertson, K.N. Inorg. Chem. 2004, 43, 6495. Equilibria and Tautomerism for Cysteine O Dianionic S O NH2 -H+ H+ Monoanionic O S O OH HS NH2 O O S NH2 O NH3 -H+ H+ Neutral O HS O OH HS NH2 Monocationic O O S NH3 OH NH3 -H+ H+ O H2S O OH NH2 HS O OH NH3 HS OH2 NH2 Comparison with a Derivative of a Bismuth-Amino Acid Complex H3N S O O H2O O N Bi O N O N O O N O O O Bi(Cys)(Phen)(NO3)2H2O c.f. NH2 Bi S Cl Herrmann, 1993 Bi(Cys)(Phen)(NO3)2H2O is more viable in acidic media and is a closer model of the potential interaction of bismuth with cysteine in the gastric environment! Consider the Other Heavy Metals How do the other heavy metals interact with the amino acids? As Cd Sb Hg Tl Pb Bi = bioactive = toxic Identification of Lead-Amino Acid Adducts by ESI-MS Same ESI-MS method used for bismuthamino acid mixtures Pb forms kinetically stable complexes with all of the essential amino acids All amino acids: 1:1, 1:2, 2:2 and 2:3 Pb:Am ratios Thr, Met, Asp: 3:2 Pb:Am ratios Ala, Val, His, Glu, Arg, Pro: Form Pb:Am complexes containing H2O or NO3 Arg: 1:1, 1:2, 1:4, 1:5, 1:6 and Pb:Am ratios Burford, N.; Eelman, M.D.; LeBlanc, W.G.; Cameron, T.S.; Robertson, K.N. Chem. Commun. 2004, 332. ESI-MS of Pb(NO3)2 and L-Threonine in 50% EtOH 974 216.9 973 972 326.0 1:1 975 976 971 977 973.7 972 .8 3:3 974.8 975.8 971.8 282.1 970.8 648.9 1:2 973.7 976.8 854.9 3:2 Peak assignments confirmed by MS/MS 3:3 Synthesis of the First Lead-Amino Acid Complex NH2 O Pb(NO3)2 + OH 50% EtOH O O N OH2 O O H3N Pb O NO3 OH2 O O Yield: 55% H3N Zwitterionic valines Identification of Interactions Between Heavy Metals and Amino Acids Using ESI-MS Metal As3+ Sb3+ # amino acids 5: Ser, Thr, Cys, Asn, Gln 4: His, Cys, Glu, Gln Bi3+ 7: His, Thr, Met, Cys, Hcys, Asn, Gln Pb2+ 21 Tl+ 21 Hg2+ 21 Cd2+ 21 Summary • ESI-MS offers a powerful new technique in understanding heavy metal bio-incorporation • Study interactions of other small and larger biomolecules with all heavy metals by virtue of their distinctive m/z values • The solid state structures of a bismuthcysteine and lead-valine complexes are the first examples involving amino acids for both • Consistent with assignments of ESI-MS data • Insight into the coordination mode for cysteine in the acidic gastric environment Acknowledgments Dr. Neil Burford Wes LeBlanc The Burford Group Dr. T.S. Cameron and Dr. K.N. Robertson (DALX) Maritime Mass Spectrometry Laboratories Canada Research Chairs Program Nova Scotia Research and Innovation Trust Fund