Transcript Slide 1
Hans Bethe solved the linear chain
Heisenberg model H , , E ( , ,
1
2
N
1
2
N
) 1 , 2 ,
Born
July 2, 1906
Strassburg, Germany
Died
March 6, 2005
Ithaca, NY, USA
Residence
USA
Nationality
American
Field
Physicist
Institution
University of Tübingen
Cornell University
Alma mater
University of Frankfurt
University of Munich
Academic advisor
N
Arnold Sommerfeld
Zur Theorie der Metalle. I. Eigenwerte und Eigenfunktionen der linearen Atomkette
Zeitschrift für Physik A, Vol. 71, pp. 205-226 (1931)
1
N
HHeisenberg J Sn .Sn1
n1
Symmetries
there is a conserved wavevector K of all the system
conserved total spin S, conserved Sz
N N
.
2
Separated problems for each set K,S, Sz
N
HHeisenberg H0 HXY , H0 J S n .S
n1
HXY
z
z
n 1
, HXY
J N
(SnSn1 SnSn1 )
2 n1
J N
(SnSn1 SnSn1 ) moves , to right or left
2 n1
2
Ground state for J>0: all spins up, no spin can be
raised, and so no shift can occur
ground state energy E( N 0) J
N
4
1 reversed spin in the chain
(E E
is solved by
N 0
f (n 1) f (n 1)
) f n J
f ( n)
2
f (n)
ik j n
e
N
,
indeed f (n 1) f (n 1)
ik j n
e
N
(e e
ik j
ik j
3
).
We must insert the periodic boundary condition for the N-spin chain
E E ( N 0) J 1 cos(k j )
One- Magnon solution: the spin wave is a boson (spin 1)
E E 0
1
E
N
N
n 1
e
ik j n
n ,
2 j
kj
N
J
2.0
1.5
1.0
E E ( N 0) J 1 cos(k j )
0.5
k
3
2
1
1
2
3
Two- Magnon solution: scattering, bound states
4
Two Magnons
a configuration is denoted by |n1,n2>,
HXY
n1<n2 reversed spins
J N
(SnSn1 SnSn1 ) moves to right or left
2 n1
provided that adiacent sites are up spins: if the reversed spins are close
the energy is different and this is an effective interaction.
First, we solve for n2 n1 1, when the spins are 'far' and move independently.
( H Heisenberg E( N0) ) n1 , n2 2 J n1 , n2 J
n1 1, n2 n1 1, n2 n1 , n2 1 n1 , n2 1
2
(Later we introduce the case n2 n1 1by means of a boundary condition.)
5
.
( H Heisenberg E( N 0) ) n1 , n2 2 J n1 , n2
J
Let
n1 1, n2 n1 1, n2 n1 , n2 1 n1 , n2 1
f (n1 , n2 ) E n1 , n2 ,
2
shift
, n2 n1 1
the energy origin : E E
N 0
E
f (n1 1, n2 ) f (n1 1, n2 ) f (n1 , n2 1) f (n1 , n2 1)
E
f n1 , n2 2 f n1 , n2
.
J
2
satisfied for n1 n2 by the product
E
i ( k1n1 k2 n2 )
f n1 , n2 e
,
(1 cos(k1 )) (1 cos k2 ).
J
Thus r.r. is
Recall One Magnon Solution :
E
1 cos( k j ).
J
Two independent magnons? NO!
New k1 and k2 must be found since PBC do not separately apply to n1
and n2 (you cannot translate one magnon across the other).
6
However,there is invariance under global translations
of both reversed spins:
f n1 N , n2 N f n1 , n2 .
We found the solution
f n1 , n2 exp[i( k1n1 k 2n2 )];
f n1 N , n2 N must be the same.
f n1 N , n2 N is obtained from f n1 , n2 by n1 n1 N and n2 n2 N :
f n1 N , n2 N f n1 , n2 e i ( k1 k2 ) N ; so f n1 N , n2 N f n1 , n2 requires :
21
k
eik1N ei
k1N 21
1
i ( k1 k2 ) N
N
e
1
: ik N
2
e i
k2 N 22
k 22
e
2
N
The integers 1 , 2
are Bethe Quantum Numbers.
21
k1
i ( k1 k2 ) N
N
e
1
:
, 1 , 2
k 22
N
2
Note: 1and 2 (0, N 1) because at N one is adding 2π to k1 or k 2 ,
and this leads to the very same wave function f exp[i( k1n1 k2 n2 )].
2 j
For 1 magnon, k j
,so the interaction produces a phase shift .
N
N
E
(1 cos(k1 )) (1 cos k2 ) is not the sum of independent magnon energies
J
The Schrödinger equation must fix . This phase shift must contain the magnon interaction.
f n1 N , n2 N f n1 , n2 is not enough to achieve this,
and there is an extra complication: another degenerate solution.
Consider the solution with eigenvalue E.
E
(1 cos(k1 )) (1 cos k2 )
J
f n1 , n2 exp[i( k1n1 k 2n2 )], for n1 n2 with
k1N 21
f n1 N , n2 N f n1 , n2
.
k2 N 22
We have seen that this solves the r.r.
f (n1 1, n2 ) f (n1 1, n2 ) f (n1 , n2 1) f (n1 , n2 1)
E
f n1 , n2 2 f n1 , n2
.
J
2
This says that our solution has k1 behind k 2 .
However, exchanging k1 and k 2 one gets a new solution of the same
recurrence relations with k 2 behind.
k1
k2
f n1 , n2 exp[i (k2 n1 k1n2 )], still for n1 n2
f n1 , n2 is equally good, still with E E ( N 0) J [(1 cos(k1 )) (1 cos k2 )]
9
The degenerate solution with the k1 and k2 exchanged and must be
included for generality and also to satisfy the boundary conditions,
as I show in a moment; so one should write
f(n1, n2) = A e i(k1n1+k2n2) + B e i(k2n1+k1n2) , 0 < n1 < n2 < N.
ik1 N
e
e i
k1 and k2 satisfy : ik N
i
2
e
e
k1 N 21
k2 N 22
The two contributions must enter with the same probability, A and B
differ by a phase a and therefore
a
a
f (n1 , n2 ) exp i k1n1 k2 n2 exp i k2 n1 k1n2 ,
2
2
0<n1 n 2 <N
Two phases are too many. Next we show that a =
10
a
a
f (n1 , n2 ) exp i k1n1 k2 n2 exp i k2 n1 k1n2 , 0<n1 n 2 <N
2
2
We must be free to decide that the numbering of spins runs in the range n2,…n2+N-1
rather than 1,…N; when we do, n2<n1+N but the wave function does not care:
Therefore we have to impose
f (n1, n2 ) f (n2 , n1 N )
f (n2 , n1 N )
a
a
exp i k1n2 k2 (n1 N ) exp i k2 n2 k1 ( n1 N )
2
2
or, expanding (),
a
a
exp i k1n2 k2 n1 k2 N exp i k2 n2 k1n1 k1 N .
2
2
a
a
Equating with f (n1 , n2 ) exp i k1n1 k2 n2 exp i k2 n1 k1n2 , we find:
2
2
a
a
a
a
exp i k2 n1 k1n2 exp i k1n2 k2 n1 k2 N exp i exp i k2 N
2
2
2
2
a
a
a
a
exp i k1n1 k2 n2 exp i k2 n2 k1n1 k1 N exp i exp i k1 N
2
2
2
2
From this result
a
a
a
a
exp i exp i k2 N , exp i exp i k1 N
2
2
2
2
we conclude:
ik1N
i
e
e
eik2 N e ia and eik1N eia and recalling ik N
, we find
i
2
e e
e i e ia and ei eia . Therefore, a .
The phase shift a between the two orderings coincides
with the phase collected by k1 in a round trip!
a
a
We rewrite f (n1 , n2 ) exp i k1n1 k2n2 exp i k2n1 k1n2 ,
2
2
in the form:
f (n1 , n2 ) e
i ( k1n1 k2n2 )
2
e
Next, find θ by considering the
i ( k2n1 k1n2 )
2
.
configurations.
The n1, n2 n1 1
spin configurations
N number of reversed scalar products 2
N
For H0 J Sz n .Sz n1 , H0 1 , 2 , N E ( 1 , 2 , N ) 1 , 2 , N with
n1
J
E( 1 , 2 , N ) 2 N
4
The Schrödinger equation, which in general reads:
N
E
f (n1 1, n2 ) f ( n1 1, n2 ) f ( n1 , n2 1) f ( n1, n2 1)
f n1 , n2 f n1 , n2
J
2
2
for this n2 n1 1case has N 2, not 4; moreover, setting n2 n1 1we find:
E
f (n1 1, n1 1) f (n1 1, n1 1) f ( n1 , n1 1 1) f ( n1 , n1 1 1)
f n1 , n1 1 f n1 , n1 1
J
2
but f ( n, n ) 0 (two reversed spins at same position is impossible). So, we are left with:
E
f (n1 1, n1 1) f (n1 , n1 2)
13
f n1 , n1 1 f n1 , n1 1
.
J
2
Recall : N number of reversed scalar products, N 4
when the spins are far. However theansatz is still f (n1 , n2 ) e
i ( k1n1 k2n2 )
2
e
i ( k2n1 k1n2 )
2
f (n, n) 0 (is not the amplitude,in this case):this obeys
N 4 . That is, f obeys
the general equation for
E
f (n1 1, n2 ) f (n1 1, n2 ) f (n1 , n2 1) f (n1 , n2 1)
f n1 , n2 2 f n1 , n2
J
2
where, setting formally n2 n1 1, we get:
E
f (n1 1, n1 1) f (n1 1, n1 1) f (n1 , n1 2) f (n1 , n1 )
f n1 , n1 1 2 f n1 , n1 1
J
2
In summary,
since N 2, we must solve
E
f (n1 1, n1 1) f (n1 , n1 2)
f n1 , n1 1 f n1 , n1 1
.
J
2
However, f (n1 , n2 ) e
i ( k1n1 k2 n2 )
2
e
i ( k2 n1 k1n2 )
2
solves the equation for N 4.
Both equations must be true!
14
To find such that: f (n1 , n2 ) e
i ( k1n1 k2n2 )
2
e
i ( k2n1 k1n2 )
2
f (n1 1, n1 1) f (n1 1, n1 1) f (n1 , n1 2) f (n1 , n1 )
E
f n1 , n1 1 2 f n1 , n1 1
J
2
and
f (n1 1, n1 1) f (n1 , n1 2)
E
f n1 , n1 1 f n1 , n1 1
.
J
2
Equating the rhs,
f (n1 1, n1 1) f (n1 1, n1 1) f (n1 , n1 2) f (n1 , n1 )
2
f (n1 1, n1 1) f (n1 , n1 2)
f n1 , n1 1
.
2
1
Simplify f (n1 , n1 1) f (n1 , n1 ) f (n1 1, n1 1) .
2
must be such that this is true.
2 f n1 , n1 1
15
1
f n1 , n1 1 f n1 1, n1 1 f n1 , n1
2
must be combined with ansatz:
f (n1 , n2 ) e
i ( k1n1 k2 n2 )
2
e
i ( k2 n1 k1n2 )
2
togive a condition which fixes . To this end,set n1 0 and n2 1.
f (0,1) e
i ( k2 )
2
e
i ( k1 )
2
i
1
1 i ( k1 k2 2 ) i ( k2 k1 2 ) i 2
e
e e 2
f 1,1 f 0,0 e
2
2
So, the relation is:
i ( k2 )
2
i ( k1 )
2
i ( k1 k2 )
2
2e
2e
e
e
and we must solve for .
i ( k2 k1 )
2
i
e 2 e
i
2
16
In order to solve
2e
i ( k2 )
2
2e
i ( k1 )
2
e
i ( k1 k2 )
2
e
i ( k2 k1
multiply by e
i
2
)
i
e 2 e
i
2
,
2
2e i e ik2 2e ik1 e i e i ( k1 k2 ) e i ( k2 k1 ) e i 1
Bring to the lhs:
2e i e ik2 e i e i ( k1 k2 ) e i e i ( k2 k1 ) 1 2e ik1
i ( k2 k1 )
ik1
e
1
2
e
e i ik
.
i
(
k
k
)
2e 2 e 1 2 1
This must be solved with Nk1 21
Nk2 22
which express the condition f n1 N , n2 N f n1 , n2 .
17
Before putting this equation in real form we check that this is really a phase factor.
Really a phase?
i ( k2 k1 )
ik1
e
1
2
e
N
i
e ik2
i ( k1 k2 )
2e e
1 D
| N | (e
2
1 e
i ( k2 k1 )
i ( k2 k1 )
2e
1 2e
ik2
e
ik1
)( e
i ( k2 k1 )
i ( k2 k1 )
1 2e )
ik1
1 2e 2e 2e
ik1
ik2
ik1
4
6 2 cos( k1 k2 ) 6 cos( k1 ) cos( k2 )
is symmetric in
k1 , k2
| N |2 | D|2
N
| | 1. So, .
D
18
i ( k2 k1 )
ik1
e
2
e
1
i
We must solve e ik
for k1 , k2 ,
i
(
k
k
)
2e 2 e 1 2 1
with Nk1 21 Nk2 22 .
Real form of Bethe Ansatz equation for
i ( k2 k1 )
ik1
e
1
2
e
To cast e i i( k k )
in real form,
ik
e 1 2 1 2e 2
e i 1
we exploit the identity cot i i
which is readily shown:
2
e
1
i
i
i
i
i
e 1
e 2 e 2
2i
e 2 e 2
i i
i
.
i
i
i
i
2
e 1
e 2 e 2 e 2 e 2
e i 1
e i ( k2 k1 ) 2e ik1 1
i
Mathematica simplifies i i
where e ik
e 1
2e 2 e i ( k1 k2 ) 1
k
k
1
to give [cot 1 cot 2 ].
2
2
2
19
Real form of Bethe Ansatz equation for
k1
k2
2 cot cot cot
2
2
2
Nk1 21 Nk2 22
Bethe Ansatz equations for 2 magnons
k1
k2
2 cot cot cot
2
2
2
Nk1 21 Nk2 22
The Bethe Ansatz equations can be solved for k1, k2 and θ
by combined analytic and numerical techniques for N = some tens.
Most solutions are scattering states with real momenta and a finite
θ; however when one of the Bethe quantum numbers λ vanishes, the
corresponding k and θ also vanish, and there is no interaction.
Other solutions with |λ1 - λ2|=1 have complex momenta with k1 = k2∗
and represent magnon bound states in which the two flipped spins
propagate at a close distance.
21
Rossi: uno dei nullo : non c’e’ interazione
Bianchi 2 – 1 >= 2 scattering states
Blu: alcuni sono stati legati
Da Karbach et al. Cond-mat9809162
22
Three Magnons: here the real fun begins!
Basis: a configuration is denoted by |n1, n2, n3>,
n1<n2<n3
N
H0 J Sz n .Sz n1
J N
HXY (SnSn1 SnSn1 )
2 n1
moves to right or to the left
n1
provided that adiacent sites are up spins: this is an effective interaction
Strategy: first solve for unhindered jump region
n3 n2 1, n2 n1 1
then impose boundary conditions.
23
amplitude :
f (n1 , n2 , n3 ) E n1 , n2 , n3 ; Schrödinger Equation
N 0
(E E
)
1
f (n1 , n2 , n3 ) 3 f (n1 , n2 , n3 ) [ f (n1 1, n2 , n3 ) f (n1 1, n2 , n3 )
J
2
f (n1 , n2 1, n3 ) f (n1 , n2 1, n3 ) f (n1 , n2 , n3 1) f (n1 , n2 , n3 1)]
trivially satisfied by
f n1 , n2 , n3 ei ( k1n1 k2n2 k3n3 ) ,
E E ( N 0) J [(1 cos(k1 )) (1 cos k2 ) (1 cos k3 )]
Exchange 1 and 2:The
by
Schrödinger
Equation
is also satisfied
f n2 , n1 , n3 ei ( k2n1 k1n2 k3n3 ) ,
still with
E E ( N 0) J [(1 cos( k1 )) (1 cos k2 ) (1 cos k3 )]
But we must account for 3! permutations P of 3 objects: (123),(231),(312),(213),(132),(321)
24
and all must enter with same probability mutual phase shifts:
i
Starting with exp[i (k1n1 k2n2 k3n3 ) (12 13 23 )] with ij ji mutual phase shifts
2
and including all permutations ,
f n1 , n2 , n3
i
i
exp[i (k1n1 k2 n2 k3n3 ) (12 13 23 )] exp[i (k2 n1 k3n2 k1n3 ) ( 23 21 31 )]
2
2
i
i
exp[i (k3n1 k1n2 k2 n3 ) (31 32 12 )] exp[i (k2 n1 k1n2 k3n3 ) ( 21 23 13 )]
2
2
i
i
exp[i (k1n1 k3n2 k2 n3 ) (13 12 32 )] exp[i (k3n1 k2 n2 k1n3 ) (32 31 21 )]
2
2
25
f n1 , n2 , n3
i
i
exp[i (k1n1 k2 n2 k3n3 ) (12 13 23 )] exp[i (k2 n1 k3n2 k1n3 ) ( 23 21 31 )]
2
2
i
i
exp[i (k3n1 k1n2 k2 n3 ) (31 32 12 )] exp[i (k2 n1 k1n2 k3n3 ) ( 21 23 13 )]
2
2
i
i
exp[i (k1n1 k3n2 k2 n3 ) (13 12 32 )] exp[i (k3n1 k2 n2 k1n3 ) (32 31 21 )]
2
2
Since we can start the numbering from n 2 , this must be equal to f n2 , n3 , n1 N ;
With n1 n2 , n2 n3 , n3 n1 N
the first term becomes:
i
exp[i(k1n2 k2 n3 k3n1 k3 N ) (12 13 23 )]
2
that must coincide with the third above
i
exp[i (k3n1 k1n2 k2 n3 ) (31 32 12 )]:
2
26
i
first term : exp[i(k1n2 k2n3 k3n1 k3 N ) (12 13 23 )] must coincide with
2
i
exp[i(k3n1 k1n2 k2n3 ) (31 32 12 )]
2
i
i
exp[ik3 N (12 13 23 )] exp[ (31 32 12 )].
2
2
12 cancels.
i
i
exp[ik3 N ] exp[ (13 23 )]exp[ (31 32 )]
2
2
since 31 13 etc.
eik3N ei (31 32 )
Let us go on with the same change of the numbering
n1 n2 , n2 n3 , n3 n1 N
f n1 , n2 , n3
i
i
exp[i (k1n1 k2 n2 k3n3 ) (12 13 23 )] exp[i (k2 n1 k3n2 k1n3 ) ( 23 21 31 )]
2
2
i
i
exp[i (k3n1 k1n2 k2 n3 ) (31 32 12 )] exp[i (k 2 n1 k1n2 k3n3 ) ( 21 23 13 )]
2
2
i
i
exp[i (k1n1 k3n2 k2 n3 ) (13 12 32 )] exp[i (k3n1 k2 n2 k1n3 ) (32 31 21 )]
2
2
f n1 , n2 , n3 f n2 , n3 , n1 N : the second
term becomes :
i
exp[i (k2n2 k3n3 k1[n1 N ]) ( 23 21 31 )]
2
i
exp[i (k2n2 k3n3 k1n1 k1 N ) ( 23 21 31 )]
2
that must coincide with
Finally, of course,
the first above :
eik1N ei (12 13 ) .
eik2 N ei (21 23 )
28
e ik1N e i (12 13 )
ik2N
i ( 21 23 )
e
e
eik3N ei (31 32 )
integers 1 , 2 , 3
k1N 12 13 21
k2 N 21 23 22
k N 2
31
32
3
3
with ji ij
Bethe Quantum Numbers (0, N 1)
3 independent magnons? NO!
Interaction produces phase shift and E is not the sum of independent
magnon energies
29
It is time worry about configurations like
e.g.
reversed arrows at n1 , n 2 =n1 +1 , n 3 ;
Allowed jumps: while n3 is free, n3
n1 can only jump to left n1
total N 4
n3 1, n3 1,
n1 1, and n2 can only jump to right n2
n2 1,
Schrödinger Equation
H n1 , n1 1, n3 ( E
N 0
2 J ) n1 , n1 1, n3
J
( n1 1, n1 1, n3 n1 , n1 2, n3 n1 , n1 1, n3 1 n1 , n1 1, n3 1 )
2
30
The special recurrence formula for the amplitude f
accounting for the hindered jumps becomes:
N 0
EE
J
However
f n , n 1, n 2 f n , n 1, n 1 f n 1, n 1, n f n , n 2, n
2 f n1 , n1 1, n3 1 f n1 , n1 1, n3 1
1
1
1
3
1
1
3
1
3
1
1
3
the general r.r. also holds, like above,since the Ansatz is still
f n1 , n2 , n3
i
i
exp[i ( k1n1 k2n2 k3n3 ) (12 13 23 )] exp[i (k2n1 k3n2 k1n3 ) ( 23 21 31 )]
2
2
i
i
exp[i ( k3n1 k1n2 k2n3 ) (31 32 12 )] exp[i ( k2n1 k1n2 k3n3 ) ( 21 23 13 )]
2
2
i
i
exp[i ( k1n1 k3n2 k2n3 ) (13 12 32 )] exp[i (k3n1 k2n2 k1n3 ) (32 31 21 )]
2
2
Recall the general r.r.:
(E E )
1
f (n1 , n2 , n3 ) 3 f (n1 , n2 , n3 ) [ f (n1 1, n2 , n3 ) f (n1 1, n2 , n3 )
J
2
f (n1 , n2 1, n3 ) f (n1 , n2 1, n3 ) f (n1 , n2 , n3 1) f (n1 , n2 , n3 1)]
N 0
31
comparison
f n1 , n1 1, n3
1
f n1 1, n1 1, n3 f n1 , n1 , n3
2
this condition (for consecutive n1 and n2 ) must be combined with
the Ansatz: computing f(n1 ,n1 1,n3 ) etc. by the Ansatz,
f n1 , n2 , n3
i
i
exp[i (k1n1 k2 n2 k3n3 ) (12 13 23 )] exp[i (k2 n1 k3n2 k1n3 ) ( 23 21 31 )]
2
2
i
i
exp[i (k3n1 k1n2 k2 n3 ) (31 32 12 )] exp[i (k2 n1 k1n2 k3n3 ) ( 21 23 13 )]
2
2
i
i
exp[i (k1n1 k3n2 k2 n3 ) (13 12 32 )] exp[i (k3n1 k2 n2 k1n3 ) (32 31 21 )]
2
2
i ( k1 k2 )
ik1
e
1
2
e
ei12 ik
.
i
(
k
k
)
2e 2 e 1 2 1
This is identicalto the condition found
before with just 2 reversed spins!!!
32
ei 1
Then, to put in real form, use Identity cot i i
2 e 1
12
k1
k2
2 cot
cot cot
2
2
2
Nk1 12 13 21 Nk2 21 23 22
Nk3 31 32 23
for fixed integers i Bethe Quantum Numbers (0, N 1),
coupled transcendental problem with
unknowns ij , ki .
Equations remain the same as in the case of
2 magnons.
With 3 magnons, many more terms, but direct extension of rules.
33
Many Magnons (many reversed spins)
N
H Heisenberg J Sn .Sn1 , J 0 ferromagnetic chain
n1
One tries with a product of magnons and everything generalizes!
Basis : |n1,n2,..nr> in growing order :sites with down spins
Each k i
e
ik2 N
e i
picks up a
e
ei
ik1N
phase from each k j
generalizes to e
iki N
e
i
ij
j
, ij ji
Nki ij 2i ,
j
i
integer, 0 i N 1 Bethe quantum numbers
Bethe Ansatz : 2 spins
f (n1 , n2 ) e
i ( k1n1 k2n2 )
2
e
i ( k2n1 k1n2 )
2
3 spins
f (n1 , n2 , n3 ) e
e
e
i ( k3 n1 k2 n2 k1n3
i ( k2 n1 k3n2 k1n3
f (n1 , n2 ,
i ( k1n1 k2 n2 k3n3
32 31 21
2
23 21 31
2
, nr )
P
)
)
e
e
12 13 23
2
)
i ( k1n1 k3n2 k2 n3
i ( k3n1 k1n2 k2 n3
e
i ( k2 n1 k1n2 k3n3
13 12 32
2
31 32 12
2
)
21 13 23
2
)
r spins
r
i r
exp i k Pj n j Pi Pj , P permutations
2 i j
j 1
r
E J (1 cos k j ) (energy origin at E( N0) )
j 1
35
)
with the result:
ij
kj
ki
2 cot cot cot , i , j 1,....r
2
2
2
to be solved with
Nk1 21
Nk2 22
Nki ij 2i ,
j
i
int eger , 0 i N 1 Bethe quantum
numbers
36
The Bethe equations are quite hard to solve for many flipped spins in large systems. In
recent years solutions have been obtained which are far from trivial; among others,
bound states of several magnons have been reported.
The Bethe Ansatz is a rare example of exact solution of an interacting
many-body problem; it keeps the same form independent of the size of the
system.
The root of the (relative) simplicity that allows this solution is onedimensionality: the evolution does not allow overtakings, and spins always
keep a fixed order.
However, without the ingenuity of Hans Bethe, the solution
could have remained undetected; who knows how many important model
problems are solvable, but still unsolved.
37
How magnons arise
Heisenberg model: H J Si .S j B Si
ij
i
On each site, S=(S x ,S y ,S z ) with S S i S
S S x +iS y
S S x -iS y
[ S , S ] 2 S z .
Intuitively, S , S must have to do with magnon a,a †
however magnon must interact and commutation relations
[a,a † ] 1 is not compatible.
Holstein-Primakov transformation to boson operators
a †a
S = 2S 1a S- = 2S a †
2S
a a † 1 a †a =1+n.
+
a †a
S S =2S 1a a†
2S
+ -
S S 2 Sa
- +
†
a †a
1.
2S
a †a
n
1 2 S (1 )(1 n) 2 S 2 Sn n n 2 .
2S
2S
a †a
a †a
a †na
11a 2S (n
)
2S
2S
2S
a †a
S = 2S 1a S- = 2S a †
2S
a a † 1 a †a =1+n.
+
a †a
S S =2S 1a a†
2S
+ -
a †a
1.
2S
a †a
n
1 2 S (1 )(1 n) 2 S 2 Sn n n 2 .
2S
2S
a †a
a †a
a †na
S S 2 Sa
11a 2S (n
)
2S
2S
2S
a †na=a †a †aa=a † ( aa † 1)a n 2 n
- +
†
S-S+ 2 Sn n 2 n.
[S+ ,S- ] 2( S a †a). This is OK provided that S z S a †a.
S S x +iS y
Indeed, using
S S x -iS y
1
S S ( S 1) S S S ( S 1) ( S S S S )
2
( S n ) 2 , which agrees with
2
z
2
x
[S , S ] 2 S z .
2
y
This holds on every site of the solid:
Heisenberg model: H J Si .S j B Si
ij
j
S = 2S 1a j a †j
aj
a †j a j
aj
2S
1 a †j a j =1+n.
1
N
k
e
ikx j
bk
j
S = 2S a
i
†
j
1-
a †j a j
2S
.
bk magnon vaiables [bk , bk†' ]= kk ' .
42
43
AF phase only
exchange field of 0.25 eV,
Predicted
spin flip
excitation
in NiO
44
Some Developments: theoretical physics in 1d
Hultén (1938) modeled 1d antiferromagnet
Lieb-Liniger (1963) solved exactly 1d spin 0 Bose gas
Lieb-Wu (1968) 1d Hubbard model (exact solution, no magnetism)
Wiegmann-Tsvelik solution of Anderson model (with assumptions that V
does not depend on k, U is small, level close to Fermi level): as long as the
Anderson model is taken to be spherically symmetric, it is 1d.
Integrable systems-statistical mechanics, string theory…
45