Transcript 幻灯片 1
Lemur Toolkit http://net.pku.edu.cn/~wbia 彭波 [email protected] 北京大学信息科学技术学院 3/21/2011 Recap Information Retrieval Models Vector Space Model Probabilistic models Language model Some formulas for Sim(VSM) Dot product Cosine Sim( D, Q) D Q Sim( D, Q) (a * b ) i i ai 2 * i Dice bi 2 (a * b ) Sim( D, Q) a b 2 i Q t1 i t2 i 2 D θ i i 2 i i Jaccard t3 (ai * bi ) i i i (a * b ) Sim( D, Q) a b (a * b ) i i i 2 2 i i i i i i i 3 BM25 (Okapi system) – Robertson et al. Consider tf, qtf, document length (k1 +1)tfi (k3 +1)qtfi avdl - dl Score(D,Q) = å ci + k2 | Q | K + tfi k3 + qtfi avdl + dl ti ÎQ dl K = k1 ((1- b) + b ) avdl - dl TF factors Doc. length normalization k1, k2, k3, b: parameters qtf: query term frequency dl: document length avdl: average document length 4 Standard Probabilistic IR Informati on need P(R| Q, d) matching query d1 d2 … dn document collection 5 IR based on Language Model (LM) Informati on need P(Q | M d ) generation query M d1 d1 M d2 d2 A query generation process For an information need, imagine an ideal document Imagine what words could appear in that document Formulate a query using those words M dn … … dn document collection 6 Language Modeling for IR Estimate a multinomial probability distribution Smooth the distribution from the text with one estimated from the entire collection P(w|D) = (1-) P(w|D)+ P(w|C) Query Likelihood ? P(Q|D) = P(q|D) Estimate probability that document generated the query terms Kullback-Leibler Divergence ? = KL(Q|D) = P(w|Q) log(P(w|Q) / P(w|D)) Estimate models for document and query and compare Question Among the three classic information retrieval model, which one is your best choice in designing your retrieval system? How can you tune the model parameters to achieve optimized performance? When you have a new idea on retrieval problem, how can you prove it? A Brief History of IR Slides from Prof. Ray Larson University of California, Berkeley School of Information http://courses.sims.berkeley.edu/i240/s11/ Experimental IR systems Probabilistic indexing – Maron and Kuhns, 1960 SMART – Gerard Salton at Cornell – Vector space model, 1970’s SIRE at Syracuse I3R – Croft Cheshire I (1990) TREC – 1992 Inquery Cheshire II (1994) MG (1995?) Lemur (2000?) IS 240 – Spring 2011 Historical Milestones in IR Research 1958 Statistical Language Properties (Luhn) 1960 Probabilistic Indexing (Maron & Kuhns) 1961 Term association and clustering (Doyle) 1965 Vector Space Model (Salton) 1968 Query expansion (Roccio, Salton) 1972 Statistical Weighting (Sparck-Jones) 1975 2-Poisson Model (Harter, Bookstein, Swanson) 1976 Relevance Weighting (Robertson, SparckJones) 1980 Fuzzy sets (Bookstein) 1981 Probability without training (Croft) IS 240 – Spring 2011 Historical Milestones in IR Research (cont.) 1983 Linear Regression (Fox) 1983 Probabilistic Dependence (Salton, Yu) 1985 Generalized Vector Space Model (Wong, Rhagavan) 1987 Fuzzy logic and RUBRIC/TOPIC (Tong, et al.) 1990 Latent Semantic Indexing (Dumais, Deerwester) 1991 Polynomial & Logistic Regression (Cooper, Gey, Fuhr) 1992 TREC (Harman) 1992 Inference networks (Turtle, Croft) 1994 Neural networks (Kwok) 1998 Language Models (Ponte, Croft) IS 240 – Spring 2011 Information Retrieval Research Boolean model, statistics of language (1950’s) Vector space model, probablistic indexing, relevance feedback (1960’s) Probabilistic querying (1970’s) Fuzzy set/logic, evidential reasoning (1980’s) Regression, neural nets, inference networks, latent semantic indexing, TREC (1990’s) – Historical View Industry DIALOG, Lexus-Nexus, STAIRS (Boolean based) Information industry (O($B)) Verity TOPIC (fuzzy logic) Internet search engines (O($100B?)) (vector space, probabilistic) IS 240 – Spring 2011 Research Systems Software INQUERY (Croft) OKAPI (Robertson) PRISE (Harman) SMART (Buckley) MG (Witten, Moffat) CHESHIRE (Larson) http://potomac.ncsl.nist.gov/prise http://cheshire.berkeley.edu LEMUR toolkit Lucene Others IS 240 – Spring 2011 Lemur Toolkit Project Some slides from Don Metzler, Paul Ogilvie & Trevor Strohman Zoology 101 Lemurs are primates found only in Madagascar 50 species (17 are endangered) Ring-tailed lemurs lemur catta Zoology 101 The indri is the largest type of lemur When first spotted the natives yelled “Indri! Indri!” Malagasy for "Look! Over there!" About The Lemur Project The Lemur Project was started in 2000 by the Center for Intelligent Information Retrieval (CIIR) at the University of Massachusetts, Amherst, and the Language Technologies Institute (LTI) at Carnegie Mellon University. Over the years, a large number of UMass and CMU students and staff have contributed to the project. The project's first product was the Lemur Toolkit, a collection of software tools and search engines designed to support research on using statistical language models for information retrieval tasks. Later the project added the Indri search engine for large-scale search, the Lemur Query Log Toolbar for capture of user interaction data, and the ClueWeb09 dataset for research on web search. Installation Linux, OS/X: Extract software/lemur-4.12.tar.gz ./configure --prefix=/install/path ./make ./make install Windows Run software/lemur-4.12-install.exe Documentation in windoc/index.html Installation Use Lemur-4.12 instead~ JAVA Runtime(JDK 6) need for evaluation tool. Environment Variable : PATH Linux: modify ~/.bash_profile Windows: MyComputer/Properties… Indexing Document Preparation Indexing Parameters Time and Space Requirements Two Index Formats KeyFile Term Positions Metadata Offline Incremental InQuery Query Language Indri Term Positions Metadata Fields / Annotations Online Incremental InQuery and Indri Query Languages Indexing – Document Preparation Document Formats: The Lemur Toolkit can inherently deal with several different document format types without any modification: HTML TREC Text XML TREC Web PDF Plain Text Mbox Microsoft Word(*) Microsoft PowerPoint(*) (*) Note: Microsoft Word and Microsoft PowerPoint can only be indexed on a Windows-based machine, and Office must be installed. Indexing – Document Preparation 1. 2. If your documents are not in a format that the Lemur Toolkit can inherently process: If necessary, extract the text from the document. Wrap the plaintext in TREC-style wrappers: <DOC> <DOCNO>document_id</DOCNO> <TEXT> Index this document text. </TEXT> </DOC> – or – For more advanced users, write your own parser to extend the Lemur Toolkit. Indexing - Parameters Basic usage to build index: IndriBuildIndex <parameter_file> Parameter file includes options for Where to find your data files Where to place the index How much memory to use Stopword, stemming, fields Many other parameters. Indexing – Parameters Standard parameter file specification an XML document: <parameters> <option></option> <option></option> … <option></option> </parameters> Indexing – Parameters where to find your source files and what type to expect BuildIndex <dataFiles> name of file containing list of datafiles to index. IndriBuildIndex <corpus> <path>: (required) the path to the source files (absolute or relative) <class>: (optional) the document type to expect. If omitted, IndriBuildIndex will attempt to guess at the filetype based on the file’s extension. <parameters> <corpus> <path>/path/to/source/files</path> <class>trectext</class> </corpus> </parameters> Indexing - Parameters The <index> parameter tells IndriBuildIndex where to create or incrementally add to the index If index does not exist, it will create a new one If index already exists, it will append new documents into the index. <parameters> <index>/path/to/the/index</index> </parameters> Indexing - Parameters <memory> - used to define a “soft-limit” of the amount of memory the indexer should use before flushing its buffers to disk. Use K for kilobytes, M for megabytes, and G for gigabytes. <parameters> <memory>256M</memory> </parameters> Indexing - Parameters Stopwords defined within <stopwords>filename</stopwords> IndriBuildIndex Stopwords can be defined within a <stopper> block with individual stopwords within enclosed in <word> tags. <parameters> <stopper> <word>first_word</word> <word>next_word</word> … <word>final_word</word> </stopper> </parameters> Indexing – Parameters Term stemming can be used while indexing as well via the <stemmer> tag. Specify the stemmer type via the <name> tag within. Stemmers included with the Lemur Toolkit include the Krovetz Stemmer and the Porter Stemmer. <parameters> <stemmer> <name>krovetz</name> </stemmer> </parameters> Retrieval Parameters Query Formatting Interpreting Results Retrieval - Parameters Basic usage for retrieval: IndriRunQuery/RetEval <parameter_file> Parameter file includes options for Where to find the index The query or queries How much memory to use Formatting options Many other parameters. Retrieval - Parameters Just as with indexing: A well-formed XML document with options, wrapped by <parameters> tags: <parameters> <options></options> <options></options> … <options></options> </parameters> Retrieval - Parameters The <index> parameter tells IndriRunQuery/RetEval where to find the repository. <parameters> <index>/path/to/the/index</index> </parameters> Retrieval - Parameters The <query> parameter specifies a query plain text or using the Indri query language <parameters> <query> <number>1</number> <text>this is the first query</text> </query> <query> <number>2</number> <text>another query to run</text> </query> </parameters> Query file format <DOC> <DOCNO> 1 </DOCNO> What articles exist which deal with TSS (Time Sharing System), anoperating system for IBM computers? </DOC> <DOC> <DOCNO> 2 </DOCNO> I am interested in articles written either by Prieve or Udo PoochPrieve, B.Pooch, U. </DOC> Retrieval – Query Formatting TREC-style topics are not directly able to be processed via IndriRunQuery/RetEval. Format the queries accordingly: Format by hand Write a script to extract the fields (可爱的Python~) Retrieval – Parameters To specify a maximum number of results to return, use the <count> tag: <parameters> <count>50</count> </parameters> Retrieval - Parameters Result formatting options: IndriRunQuery/RetEval has built in formatting specifications for TREC and INEX retrieval tasks Retrieval – Parameters TREC – Formatting directives: <runID>: a string specifying the id for a query run, used in TREC scorable output. <trecFormat>: true to produce TREC scorable output, otherwise use false (default). <parameters> <runID>runName</runID> <trecFormat>true</trecFormat> </parameters> Outputting INEX Result Format Must be wrapped in <inex> tags <participant-id>: specifies the participant-id attribute used in submissions. <task>: specifies the task attribute (default CO.Thorough). <query>: specifies the query attribute (default automatic). <topic-part>: specifies the topic-part attribute (default T). <description>: specifies the contents of the description tag. <parameters> <inex> <participant-id>LEMUR001</participant-id> </inex> </parameters> Retrieval - Evaluation To use trec_eval: format IndriRunQuery results with appropriate trec_eval formatting directives in the parameter file: <runID>runName</runID> <trecFormat>true</trecFormat> Resulting output will be in standard TREC format ready for evaluation: <queryID> Q0 <DocID> <rank> <score> <runID> 150 Q0 AP890101-0001 1 -4.83646 runName 150 Q0 AP890101-0015 2 -7.06236 runName Use RetEval for TF.IDF First run ParseToFile to convert doc formatted queries into queries <parameters> <docFormat>web</docFormat> <outputFile>filename</outputFile> <stemmer>stemmername</stemmer> <stopwords>stopwordfile</stopwords> </parameters> ParseToFile paramfile queryfile http://www.lemurproject.org/lemur/parsing.html#parseto file Use RetEval for TF.IDF Then run RetEval <parameters> <index>index</index> <retModel>0</retModel> // 0 for TF-IDF, 1 for Okapi, // 2 for KL-divergence, // 5 for cosine similarity <textQuery>querie filename</textQuery> <resultCount>1000</resultCount> <resultFile>tfidf.res</resultFile> </parameters> RetEval paramfile http://www.lemurproject.org/lemur/retrieval.html#RetEva l Evluate Results TREC qrels Ground Truth: judge by human assessors. Ireval tool java -jar “D:\Program Files\Lemur\Lemur 4.12\bin\ireval.jar”res ult qrels >pr.result More Stories about Indri lemur_sigir_2006 Paul Ogilvie Trevor Strohman Thank You! Q&A