Chesapeake Bay Program Incorporation of Lag Times into the

Download Report

Transcript Chesapeake Bay Program Incorporation of Lag Times into the

Chesapeake Bay Program
Incorporation of Lag Times
into the Decision Process
Gary Shenk
10/16/12
1
Chesapeake Bay Program
Does Not Incorporate Lag Times
into the Decision Process
2
No Lag in Model or TMDL
• The goal of the TMDL and the Watershed
Implementation Plans is to have practices in
place by 2025 that will eventually lead to
meeting the water quality standards
• Watershed model scenario mode:
– The long-term annual average loads given land
use, land management, BMPs, point sources,
atmospheric deposition, etc at steady state.
3
Chesapeake Bay Partnership Models
4
How the Watershed Model Works
Calibration Mode
Hourly or daily
values of
Meteorological
factors:
Annual, monthly, or
daily values of
anthropogenic factors:
Land Use Acreage
BMPs
Fertilizer
Manure
Tillage
Crop types
Atmospheric deposition
Waste water treatment
Septic loads
Precipitation
Temperature
Evapotranspiration
Wind
Solar Radiation
Dew point
Cloud Cover
HSPF
Daily flow, nitrogen,
phosphorus, and
sediment compared
to observations
over 21 years
5
How the Watershed Model Works
Each segment consists of 30
separately-modeled land uses:
•
•
•
•
•
•
•
•
•
Regulated Pervious Urban
Regulated Impervious Urban
Unregulated Pervious Urban
Unregulated Impervious Urban
Construction
Extractive
Combined Sewer System
Wooded / Open
Disturbed Forest
Plus: Point Source and
Septic Loads, and
Atmospheric
Deposition Loads
• Corn/Soy/Wheat rotation (high
till)
• Corn/Soy/Wheat rotation (low
till)
• Other Row Crops
• Alfalfa
• Nursery
• Pasture
• Degraded Riparian Pasture
• Afo / Cafo
• Fertilized Hay
• Unfertilized Hay
– Nutrient management versions
of the above
Each calibrated to nutrient and
Sediment targets
6
6
Two Separate Segmentation Schemes
• A land use within a land
segment has the same inputs
HERKIMER
ONEIDA
ONONDAGA
CAYUGA
ONTARIO
YATES
OTSEGO
CORT LAND
STEUBEN
ALLEGANY
atmospheric deposition
fertilizer
manure
precipitation
CHEMUNG
MCKEAN
LEE
BROOME
BRADF ORD
SUSQUEHANNA
BRADF ORD
WAYNE
WYOMING
ELK
CAMERON
LYCOMING
SULLIVAN
WYOMING
LACKAWANNA
LUZERNE
CLINTON
LYCOMING
JEFFERSON
CLINTON
MONTOUR
COLUMBIA
CENTRE
CLEARFIELD
LUZERNE
UNION
UNION
CENTRE
CARBON
NORT HUMBERLAND
SNYDER
SCHUYLKILL
INDIANA
MIF FLIN
CAMBRIA
JUNIATA
BLAIR
DAUPHIN
HUNTINGDON
PERRY
SOMERSET
BEDFORD
BEDFORD
BERKS
LEBANON
CUMBERLAND
• Land segmentation driven by
availability of land use data
• Land segments determined by
LEE
DELAWARE
TIOGA
TIOGA
POTTER
DAUPHIN
CUMBERLAND
FRANKLIN
FULTON
BEDFORD
FRANKLIN
LANCASTER
ADAMS ADAMS
– County lines
– Rainfall Variances
– Federal / Non-Federal
SCHOHAR
CHENANGO
TOMPKINS
SCHUYLER
–
–
–
–
MADISON
LIVINGSTON
CHEST ER
YORK
CHEST ER
ALLEGANY ALLEGANY
PRESTON
GARRETT
MORGAN
MINERAL
MINERAL
HAMPSHIRE
WASHINGTON
CARROLL
BERKELEY
FREDERICK
FREDERICK
JEFFERSON
TUCKER
GRANT
HARDY
HARDY
GRANT
FREDERICK
WINCHEST ER
CLARKE LOUDOUN
WARREN
SHENANDOAH
FAUQUIER
SHENANDOAH WARREN
CECIL NEW CASTLE
BALTIMORE
HARFORD
BALTIMORE
HOWARD
KENT
MONTGOMERY
KENT
QUEEN ANNES
ANNE ARUNDEL
DIST
OH
F COLUMBIA
FAIRFAX
FALLS
URC
AR
LINGTON
FAIRFAX
CCH
ITY
CAROLINE
PRINCE
ALEXAND
RIA GEORGES
PENDLETON ROCKINGHAM
RAPPAHANNOCK FAUQUIERMAN
ASSAS
PARK
MAN
ASSAS
RAPPAHANNOCK
TALBOT
PENDLETON
PRINCE WILLIAM
PAGE
SUSSEX
PAGE
CALVERT
CULPEPER
MADISON
CHARLES
ROCKINGHAM
HIGHLAND
HARRISON
BURG
STAF FORD
HIGHLAND
GREENE MADISON
ROCKINGHAM
WICOMICO
GREEN
REENE
E
FREDERICKSBURG
DORCHESTER
G
AUGUSTA
ORANGE
KING GEORGE
ST MARYS
STAUNTO
AUGUSTA
N
SPOTSYLVANIA
BATH
ALBEMARLE
WORCESTER
WAYNESBORO
ESBORO
WAYN
WESTMORELAND
BATH
CHARLOTT ESVILLE
SOMERSET
AUGUSTA ALBEMARLE
CAROLINE
LOUISA
ESSEX
CLIFTON FORGE
ROCKBRIDGE NELSON
RICHMOND
ALLEGH
COVINGTO
ANYN
FLUVANNA
LEXINGTON
NORT HUMBERLAND
HANOVER
AMH
ER
BU
REN
OCA
KBRID
VIST
GE
AST
NELSON
GOOCHLAND
KING WILLIAM
LANCASTER
ACCOMACK
MONROE
BOTETOURT
KIN
G
AN
D
KING AND Q
QUEEN
UEEN
AMHERST
MIDDLESEX
IDDLESEX
BUCKINGHAM
M
CRAIG
BOTETOURT
POWHATAN
HENRICO
CUMBERLAND
BUCHANAN MCDOWELL
GILES
BEDFORD
R
ICH
MON
D
N
EW
KEN
T
LYNCHBURG
GLOUCESTER
GILES
CHEST ERF IELD
BEDFORD
APPOMATTOX
ROANOKE
OANOKE
MATHEWS
R
AMELIA
SALEM
CHARLES CITY
TAZEWELL
GILES
DICKENSON
ROANOKE
BEDFORD
JAMES CITY
BLAND
HOPEWELL
MONTGOMERY
WISE
CAMPBELL
TAZEWELL
PRINCE EDWARD
COLON
IALSBUR
HEIGHTS
WILLIAMSBURG
NORT HAMPTON
PETER
G
RADFORD
ROANOKE
YORK
RUSSELL
PETER
PR
SBUR
INCEGGEOR
GEORGE
GE
PR
INCE
NORT ON
PULASKI
FRANKLIN
NOTTOWAY
POQUOSON
SCOTT
RUSSELL
SURRY NEWPORT NEWS
DINWIDDIE
SCOTT
FRANKLIN
WYT HE
CHARLOTT E
SMYTH
HAMPTON
FLOYD
LUNENBURG
ISLE OF WIGHT
WYT HE
SUSSEX
SCOTT
WASHINGTON
PITTSYLVANIA
ISLE OF WIGHT NORF OLK
CARROLL
SMYTH
GRAYSON
HALIF AX
PORTSMOUTH
PATRICK
BRISTOL
WASHINGTON
GRAYSON
GALAX
T INSVILLE
BRUNSWICK
VIRGINIA BEACH
PATRICK MARH
ENRY
SOUTH BOST ON
MECKLENBURG
CARROLL
SULLIVAN
EMPORIA SOUTHAMPTO
FRAN
N KLIN SUF FOLK CHESAPEAKE
JOHNSON
DANVILLE
ASHE
GREENSVILLE
ALLEGHANY
ASHE
ALLEGHANY
SURRY
STOKES
ROCKINGHAM
CASWELL
PERSON
WAT AUGA
VANCE
WARREN
NORT HAMPTON
GRANVILLE
FORSYTH
GUILFORD
ALAMANCE
ORANGE
7
Land Simulation – 1 Acre
4 completely mixed soil layers
Surface
Interflow
Lower Zone
Ground Water
Chesapeake Bay Program Modeling
Storages can Build up in the landscape
Denitrification
Trees
Roots
Leaves
Atmospheric Deposition
Nitrate
Export
Solution
Ammonia
Export
Export
Adsorbed
Ammonia
Particulate
Labile
Organic N
Export
Export
Solution
Labile
Organic N
Particulate
Refractory
Organic N
Export
Export
Solution
Refractory
Organic N
9
How the Watershed Model Works
Fertilizer
Manure
Atmospheric deposition
Precipitation
Management filter
Runoff
Hydrology
submodel
Sediment
submodel
River
Phosphorus
submodel
hourly
Nitrogen
submodel
10
Scale in Phase 5 - Sediment
Edge of Field
Expected loads from one acre
BMP Factor
Edge of Stream
60-100 sq miles
Land Acre Factor
Delivery Factor
Scour/
Deposition
In Stream Concentrations
Phase 5 river segmentation
• A river segment gathers
inputs from the
watershed and has one
simulated river
• Consistent criteria over
entire model domain
– Greater than 100 cfs
or
– Has a flow gage
12
How the Watershed Model Works
Scenario Mode
Hourly or daily
values of
Meteorological
factors:
Constant values of
anthropogenic factors:
Land Use Acreage
BMPs
Fertilizer
Manure
Tillage
Crop types
Atmospheric deposition
Waste water treatment
Septic loads
Precipitation
Temperature
Evapotranspiration
Wind
Solar Radiation
Dew point
Cloud Cover
HSPF
Run for 1984-2000
Average 1991-2000
For ‘flow-normalized
average annual loads’
13
Nitrogen Loads Delivered to the Chesapeake Bay By Jurisdiction
Point source loads reflect measured discharges while
nonpoint source loads are based on an average-hydrology year
NY
PA
DC
MD
WV
VA
DE
400
Phase 4.3 Data
350
333.9
5.9
300
million lbs./year
90.5
289.9 281.1
5.5
5.1
4.5
250
79.0
7.5
200
7.7
81.1
59.1
150
277.7 275.1 270.2
5.0
4.9
266.3 262.9 261.9 260.7
4.9
4.8
4.6
4.6
8.2
5.0
78.4
7.3
58.1
3.5
77.8
7.1
75.4
6.8
74.4
73.1
6.6
6.6
73.9
73.8
71.9
6.7
6.7
6.6
184.4
56.7
57.7
56.9
56.2
53.7
53.2
54.8
3.6
4.1
3.5
2.9
2.9
2.9
3.5
100
120.0
114.7
109.8
109.2
108.4
106.6
105.7
104.4
103.9
2.9
52.1
51.4
4.8
4.7
37.1
37.3
2.4
2.4
71.4
71.9
175
175
102.8
50
0
183.1
3.0
20.7
18.9
18.8
18.2
17.8
17
17.1
16.8
16.8
16.5
13.6
13
1985
2000
2001
2002
2003
2004
2005
2006
2007
2008
Strategy
State
Cap
14
14 Goal
Lag Time
• Calibration – the WSM is calibrated to
observed data, so including important lagged
processes would improve calibration
• Validation of predictions – if the WSM is
predicting changes in nutrient loads that are
not seen in the monitoring data, would lags
help to explain the difference.
• Communication – When will the Chesapeake
Bay respond to management actions
15