Transcript Slide 1

Hamiltonian Formalism

g f dg

(

x

,   •

f y

) 

ux vdy

df

Legendre transformations

dg xdu

   

f

x df

g

y dx

dy

 

f

y

udx

 

g

u dy xdu du

Legendre transformation :

udx

 

vdy u v

  

f

x

f

y udx g

( 

y

,

vdy

udx u

) 

v xdu

  

g y x

  

g

u g

(

y

,

u

) 

v

f

(

x

,

y

) 

ux

g

y

;

x

  

g

u

Adrien-Marie Legendre (1752 –1833)

H

What is H?

H

M m

  1 

L

q

m q

m

L

 •

Conjugate momentum

L

q

m

Then

L

(

q

1 ,...,

q M

,

q

 1 ,...,

q

M

,

t

) 

m M

  1  •

So

p m v g

(

y

,

u

)  

f

(

x

,

y

) 

ux

g

y

;

x

  

g

u p m q

m H

(

q

1 ,...,

q M

,

p

1 ,...,

p M

,

t

)  

L

(

q

1 ,...,

q M

,

q

 1 ,...,

q

M

,

t

) 

m M

  1

p m q

m

dH

What is H?

H

 

L

m M

  1

p dL

 

d

L

  

t m M

dt

 1 

p m m M

  1

q

m

 

p m

d q

M m

 

m

1   

m

q

q

m m

L

q m dp m

dq m

L

q

m

 

L

q

m

d q

m

 

p m

q m

 

L d dt

d dt

  

L

q

m

 

m

 

m

  

m M

  1

 

m dq m

q

m dp m

 

L

t dt

What is H?

dH

m M

  1

 

m dq m

q

m dp m

 

L

t dt

H

q m

 

m

H

p m

q

m

H

t

  

L

t

dH dt dH dt

M m

  1   

H

q m q

m

 

H

p m

m

   

H

t

m M

  1

 

m q

m

q

m m

 

H

t dH dt

 

H

t

What is H?

If

L

L

0 (

q

1 ,

q

2 ,...,

q M

,

t

)  

i l

1

i

(

q

1 ,

q

2 ,...,

q M

i

, 

j l

2

ij

(

q

1 ,

q

2 ,...,

q M

,

t

)

q

i q

j

L

0 

L

1 

L

2 ,

t

)

q

i

Then

H

L

2 

L

0 • •

Kinetic energy

T

 

i

In generalized coordinates

1 2

m i

r i



r i

2  

r i

(

q

1 ,

q

2 ,...,

q M

,

t

)

T

 

i

1 2

m i

    

r

i

t

 

j

r

i

q j q

j

    2

T

 

i

 

j i

1 2

m i m i

    

r

i

q

r

t

 

i j T

 

r

i

j

What is H?

r

i

q j q

j

    2  

i

 

t q

j

1 2

m i j

  ,

k i

1 2

m

r i

 

i

q j

• • • 

For scleronomous generalized coordinates

1 2

j

  ,

k i m i r

i

 

r

i

q j r i

  (

q

, 1 

r

i

q k q

2 ,...,

q

j q

k q M

 )

L

2

Then If

V

H

L

0 

L

2 

L

0 

T

L

0

H

T

V

 

r

i

t

r

 

i

q k

2 

q

j q

k E mec

What is H?

L

L

0 

L

1 

L

2 •

For scleronomous generalized coordinates, H is a total mechanical energy of the system (even if H depends explicitly on time)

If H does not depend explicitly on time, it is a constant of motion (even if is not a total mechanical energy)

In all other cases, H is neither a total mechanical energy, nor a constant of motion

Hamiltonian : Hamilton’s equations

H

(

q

1 ,...,

q M

,

p

1 ,...,

p M

,

t

) 

L

(

q

1 ,...,

q M

,

q

 1 ,...,

q

M

,

t

) 

M m

  1

p m q

m

Hamilton’s equations of motion :

q

m

 

H

p m m

  

H

q m

H

t

  

L

t

Sir William Rowan Hamilton (1805 – 1865)

Hamiltonian formalism

For a system with

2M M

degrees of freedom, we have independent variables

q

and

p

:

2M

-dimensional phase space (vs. configuration space in Lagrangian formalism)

Instead of

M

second-order differential equations in the Lagrangian formalism we work with

2M

first-order differential equations in the Hamiltonian formalism

Hamiltonian approach works best for closed holonomic systems

Hamiltonian approach is particularly useful in quantum mechanics , statistical physics , nonlinear physics , perturbation theory

d dt

L

q

j

Hamiltonian formalism for open systems

 

L

q j

Q j dp j dt

 

L

q j

Q j q

m

 

H

p m m

  

H

q m

Q m

Hamilton’s equations in symplectic notation

Construct a column matrix (vector) with

2M

elements

j

q j

; 

M

j

p j

Then

  

H

η

 

j

 

H

q j

;   

H

η

 

M

j

 

H

p j

J

 •   

0 Construct a

2M

x

2M

1 1 0

 

1

       1 0 ...

0 0 1 ...

0

square matrix as follows:

...

...

...

...

0 0 ...

1      

0

       0 0 ...

0 0 0 ...

0 ...

...

...

...

0 0 ...

0      

Hamilton’s equations in symplectic notation

Then the equations of motion will look compact in the symplectic ( matrix ) notation :

J

H

η

Example (

M

= 2):

     

q

 

q

 2 1 1 2              0 0 0 1 0 0 0  1 1 0 0 0 0 1 0 0            

H

H H

 

H

/ / / /   

q q p

1 

p

2 1 2      

Lagrangian to Hamiltonian

• •

Obtain conjugate momenta from a Lagrangian

p m

  

L

m

Write a Hamiltonian

q

 

q

H

 

L

m M

  1

p m

m

(

q

,...,

q

,

p

,...,

p

,

t

) •

q

 

q

 (

q

,...,

q

,

p

,...,

p

,

t

)

Hamiltonian to make it a function of coordinates, momenta, and time

Lagrangian to Hamiltonian

b mn

b nm

L

(

For a Lagrangian quadratic in generalized velocities

q

1 ,...,

q M

,

q

 1 ,...,

q

M

, ) 

L

0 (

q

1 ,...,

M

,

t

)  • • 

m a m

(

q

1 ,...,

q M

,

t

Then a Hamiltonian

)

q

m

Write a symplectic notation:

H

 

m

n

,

p

b mn

L L

(

q

1  ,...,

L

0 

q M

~

a

,

t

 )

q

 1 2

m q

 ~

q

n

b

 

q p

L

0 

q a

 1 2 ~

q b

  ~ (

p

a

) 

L

0  1 2 ~

q b

p

 •

Conjugate momenta

L

 ~

q

  

q

L

0  ~

a

 1 2 ~

q b

 

a

b

Lagrangian to Hamiltonian p

a

b

 •

Inverting this equation p

a

b

b

 1 (

p

a

)  (  )

b

 1   •

Then a Hamiltonian

(  )

b

 1 (

p

a

) 

L

0

H

 ~ (

p

a

) 

L

0  1 2 ~

q b

  1 2 (  )

b

 1

bb

 1 (

p

a

)

H

 1 2 (  )

b

 1 (

p

a

) 

L

0

Example: electromagnetism

L

m

(

r

 

r

 ) 

q

 2 

q

(

r

  

A

)

p j

 

L

r

j

m r

j

qA j r

j

p j H

 

p

r

 

L

qA j m r

  

p

 

q A m H

 

p

 

p

 

q A

m m

2  

p m

q A

  2 

q

 

q

  

p

 

q A

m

A

 

Example: electromagnetism

   

H q

p

  

p

 

p

p

  

A m

 

p

q p

m

 

q A

q A

A

  

m

p

2  

A

2 

p

 

p

m

p

 

p

q

2 

A

p

 2 

p m

2

m

q

2 2 

A m

 

A

2

m

q

    

p

m q

2 

q p

A

   

A

2  2

q

q p

2

m

m

   

A

2  

A

 

q q

2 2 

q p H

  

A

   

A q

A

   

p q

m

 

q A

  2 

p

2

q m

 2 2

m

A

q A

 2  

A

  

A

 

q

Hamilton’s equations from the variational principle

Action functional :

t

2

I

 

t

1

L

(

q

1 ,...,

q M

,

q

 1 ,...,

q

M

,

t

)

dt

t t

1 2  

m M

   1

p m q

m

H

(

q

1 ,...,

q M

,

p

1 ,...,

p M

,

t

)  

dt

Variations in the phase space :

q m

(

t

,  )

p m

(

t

,  )  

q m

0

p m

0 (

t

) (

t

)  

m

 

m

(

t

) (

t

)  

m m

(

t

1 ) (

t

1 )    

m m

(

t

2 (

t

2 ) )   0 0

Hamilton’s equations from the variational principle

dI d

 

t t

1 2 

M t t

1 2  

m M

 1 

m

 1   

m dp d

m q

m

 •

q

m

 

m

Integrating by parts

p m d q

d

m

p m

H

q m

 

m dH d

   

dt

H

p m

m

 

dt t

1 2

t M



m

 1    

m q

m t

1 2

t m M

  1    

m

m

m

  

H

p m

H

q m

  

m

m

    

H

p m

m

 

m

H

q m

 

dt

   

m m M

  1 

m

dt p m t

2

t

1

Hamilton’s equations from the variational principle

dI d

 

t t

1

m M

2   1  

q

m

 

H

p m

  

m

  

m

 

H

q m

  

m dt

 0 •

For arbitrary independent variations

q

m

 

H

p m

; 

m

  

H

q m

Conservation laws

m

  

H

q m

; 

m

 

H

p m

;

dH dt

 

H

t

If a Hamiltonian does not depend on a certain coordinate explicitly (cyclic), the corresponding conjugate momentum is a constant of motion

If a Hamiltonian does not depend on a certain conjugate momentum explicitly (cyclic), the corresponding coordinate is a constant of motion

If a Hamiltonian does not depend on time explicitly, this Hamiltonian is a constant of motion

Higher-derivative Lagrangians

Let us recall: L

dxdydz

L

L

    

d i i η m

( 

x n i r m

(

t

)

x n

/ ) ,

dt i x n

,

t

   

i x n r m

  0 , 1 , 2 , 3 ...

?

x

,

y

,

z

,

t

,...

?

r x

,

r y

,

r z

Lagrangians with i > 1 occur in many systems and theories: 1. Non-relativistic classical radiating charged particle 2.

(see Jackson) Dirac’s relativistic generalization of that 3. Nonlinear dynamics 4. Cosmology 5. String theory 6. Etc.

Higher-derivative Lagrangians

dI d

 •

For simplicity, consider a 1D case:

Variation

L

L

(

x

,

x

(

t

,  ) 

x

 , 

x

 , 

x

  ,...)

x

0 (

t

)   (

t

) 

t t

1  2

dL dt d

 

t t

1  2 

L

x

  

L

x

    

L

 

x

    

L

 

x

      ...

dt t

1

t

2  

L

x

  

dt

t

1

t

2  

d dt

L

x

 

dt

 

L

x

 

t

2

t

1 Mikhail Vasilievich Ostrogradsky (1801 - 1862)

dI d

 

t t

1  2

Higher-derivative Lagrangians

dL dt d

 

t t

1  2 

L

x

  

L

x

    

L

 

x

    

L

 

x

      ...

dt t

1

t

2  

L

 

x

  

dt

t

1

t

2  

d dt

L

 

x

  

dt

 

L

 

x

  

t

2

t

1 

t

1

t

2 

d

2

dt

2 

L

 

x

 

dt

 

L

 

x

  

t

2

t

1 

d dt

L

 

x

 

t

2

t

1

dI d

 

t t

1  2

Higher-derivative Lagrangians

dL dt d

 

t t

1  2 

L

x

  

L

x

    

L

 

x

    

L

 

x

      ...

dt t

1

t

2  

L

 

x

    

dt

t

1

t

2  

d dt

L

 

x

   

dt

 

L

 

x

   

t

2

t

1 

t

1

t

2 

d

2

dt

2 

L

 

x

   

dt

 

L

 

x

   

t

2

t

1 

d dt

L

 

x

   

t

2

t

1

t

1

t

2  

d

3

dt

3 

L

 

x

  

dt

 

L

 

x

   

t

2

t

1 

d dt

L

 

x

   

t

2 

d

2

dt

2

t

1 

L

 

x

  

t

2

t

1

dI d

 

t t

1 2     

L

x

Higher-derivative Lagrangians

d dt

   

L

x

    

d dt

2 2    

L

 

x

    

d dt

3 3    

L

 

x

      ...

   

dt

    

L

x

 

d dt

   

L

 

x

    

d

2

dt

2    

L

 

x

      ...

   

t

2

t

1     

L

 

x

 

d dt

   

L

 

x

      ...

         

L

 

x

   ...

    

t

2

t

1  ...

 0

t

2

t

1

p i

k

...

 

i q

1  •

Generalized coordinates/momenta:

x

;

q

2 

x

 ;

q

3  

x

 ;

q

4  

x

  ; ...

d dt p

1

p

2

p

3 ...

k

i

 

L dt k x

dI d

 

t t

1 2  

k

 1

Higher-derivative Lagrangians

d dt k

 1 

L

q k

dt

k

  1

p k d dt k

 1 

t

2

t

1 •

Euler-Lagrange equations:

 0

k

  1

d dt k

 1 

L

q k

 0 •

We have formulated a ‘higher-order’ Lagrangian formalism

What kind of behavior does it produce?

q

1 

x q

2 

x

p

1

p

2   

L

x

 

L

 

x

 

d L

Example

L

(

x

,

x

 , 

x

 ) 

L dt

 

x

p

1  

L

x

 

p

1  2  

L

x

 2 

L

x

d dt

L

x

 

d dt

2 

L

 

x

  0 

L

x

  1

H

p

1  1 

p

2  2 

L

(

x

,  , 

x

 )

dH

 

H

p

1  1 

p

1

d q

 1 

q

 1

dp

1 

Example

p

2  2 

L

(

x

,  , 

x

 )

p

2

d q

 2 

q

 2

dp

2  

L

x dx

 

L

 

x

d

x

   

p

1

dq

2

p

1   2

q

 1

dp

1 

dq

2  

p

2

p

2

d q

 2

d q

 2 

q

 2

dp

2  

L

x

 

L

x

d x

 1

dq

1  1

dp

1   2

dp

2  1

dq

1   2

dq

2  1 

L

 

x

 

p

2

q

m

 

H

p m

; 

m

  

H

q m

;

dH dt

 0 

L

x

 

p

1   2

H

Example

p

1

q

 1 

p

2

q

 2 

L q

 1 

x

 

q

2 •

H is conserved and it generates evolution – it is a Hamiltonian!

H

p

1

q

 1 

p

2

q

 2 

L

p

1

q

2 

p

2  2 

L

Hamiltonian linear in momentum?!?!?!

No low boundary ground state!!!

on the total energy – lack of

Produces ‘runaway’ solutions: the system becomes highly unstable - collapse and explosion at the same time

‘Runaway’ solutions

Unrestricted low boundary of the total energy produces instabilities

Additionally, we generate new degrees of freedom, which require introduction of additional (originally unknown) initial conditions for them

These problems are solved by means of introduction of constraints

Constraints restrict unstable behavior and eliminate unnecessary new degrees of freedom

Canonical transformations

Recall gauge invariance (leaves the evolution of the

system unchanged):

L

' 

L

Let’s combine

dF L

 {

q m

};

L

' 

dt

gauge invariance with Legendre

{

Q m

}

m M

  1

transformation:

M p m q

m

H

m

  1

P m

m

K

dF dt

m

•   

K P m

; 

m

  

K

Q m

;

dK dt

  

K t

K – is the new Hamiltonian (‘Kamiltonian’

)

K may be functionally different from H

9.1

m M

  1

Canonical transformations

p m q

m

H

m M

  1

P m

m

K

dF dt

Multiplying by the time differential:

m M

  1

dF p m dq m

Hdt

m M

  1

p m dq m

m M

  1

P m dQ m

P m dQ m

So

p m

 

F

q m

;

P m

  

F

Q m

;

K

Kdt

dF K

H

dt

H

 

F

t F

F

(

q

1 ,

q

2 ,...,

q M

,

Q

1 ,

Q

2 ,...,

Q M

,

t

) 9.1

Generating functions

F

F

1 (

q

1 ,

q

2 ,...,

q M

,

Q

1 ,

Q

2 ,...,

Q M

,

t

) •

Such functions are called generating functions canonical transformations of

They are functions of both the old and the new canonical variables, so establish a link between the two sets

Legendre transformations may yield a variety of other generating functions

9.1

9.1

Generating functions

F

F

1 (

q

1 ,

q

2 ,...,

q M

,

Q

1 ,

Q

2 ,...,

Q M

,

t

) •

F

We have three additional choices:

F

2 (

q

1 ,

q

2 ,...,

q M

,

P

1 ,

P

2 ,...,

P M

,

t

) 

m M

  1

Q m P m F

F

F

3 (

p

1 ,

F

4 (

p

1 ,

p

2 ,...,

p

2 ,...,

p M p M

,

Q

1 ,

Q

2 ,...,

Q M

,

P

1 ,

P

2 ,...,

P M

,

t

)  ,

t

) 

m M

  1

q m m M

  1

q m p m p m

Q m P m

Canonical transformations may also be produced by a mixture of the four generating functions

F

1 

m M

  1

q m Q m

An example of a canonical transformation

p m

 

F

q m

;

P m

  

F

Q m

;

K

H

 

F

t

9.2

Q m

p m

;

P m

 

q m

;

K

H

Generalized coordinates are indistinguishable from their conjugate momenta, and the nomenclature for them is arbitrary

Bottom-line: generalized coordinates and their conjugate momenta should be treated equally in the phase space

Criterion for canonical transformations

Q

Q

(

q

,

p

);

P

P

(

q

,

p

)

q

q

(

Q

,

P

);

p

p

(

Q

,

P

) 9.4

How to make sure this transformation is canonical?

q

  

Q q

  

Q p

  

H p

 

Q q

  

H q

 

Q p

On the other hand

H

P

 

H

p

p

P

 

H

q

q

P

Q

• 

q

If

 

p

P

Then

; 

Q

p

  

q

P

 

H

P

Criterion for canonical transformations

9.4

Similarly,

 

P

q q

  

P

p

 

H

p

P

q

 

H

q

P

p

H

Q

 

H

p

p

Q

 

H

q

q

Q

If

Then

P

q

  

p

Q

; 

P

p

 

q

Q

  

H

Q

Criterion for canonical transformations

9.4

So,

q

  

H

p

;   

H

q

  

H

P

;   

H

Q

; •

If

P

p

 

q

Q

; 

Q

q

 

p

P

; 

P

q

  

p

Q

; 

Q

p

  

q

P

9.4

 

i

Canonical transformations in a symplectic form

J

H

η

 •

After transformation

j

q j

; 

M

j

ζ

ζ

(

η

)  

p j j

Q j

; 

M

j

 2

j M

  1    

i j

 

j A ij

    

i j

A

 

AJ

H

η

P j

On the other hand

H

 

i

 2

j M

  1 

H

 

j

   

i j

H

η

 ~

A

H

ζ

F

t

ζ

 

AJ

~

A

H

ζ

 0 

K

H

Canonical transformations in a symplectic form ζ

 

AJ

~

A

H

ζ

For the transformations to be canonical: ζ

 

J

H

ζ

Hence, the canonicity criterion is:

~

AJ A

J

9.4

For the case M = 1, it is reduced to (check yourself)

P

p

 

q

Q

; 

Q

q

 

p

P

; 

P

q

  

p

Q

; 

Q

p

  

q

P

1D harmonic oscillator

P H

H

p

2 

kq

2 

E

2

m

2 • 

Let us find a conserved canonical momentum

const

 0    

H Q H

H

(

P

)

Generating function

F

F

1 (

q

,

Q

)

P

  

F

Q p

 

F

q

p

2 2

m

kq

2 2 

H

   

F

Q

  

F

/ 2

m

q

2 

kq

2 2 9.3

9.3

H

1D harmonic oscillator

F

/ 

Q

F

/ 

q

2

m

2 

kq

2 2

Nonlinear partial differential equation for F

H

  

dA dQ

• •

A

'

Let’s try to separate variables

F

A

(

Q

)

b

(

q

)

H

Let’s try

2

q

2     

b

'

A

2 2

m

 

q k

2  

q

2

H

(

P

)  

P A

'

b

  

2

m

' 2

A

' 

A

2

m

k

  

A

2 

km m Q

m

A

2 

dA

km

k

cot  1   

A

2

kq

2 2 

km m A km

 

Q

F m

/

k

cot

1D harmonic oscillator

 1 

A

/

km

A

km

cot 

Q

A

(

Q

)

b

(

q

) 

km

cot 

Q P H

 • (

We found a generating function!

P

) 

P E

 

H

P

 1  

F

Q

 2 sin 2 (

q Q

2

k k

/

m

)

k

/

m

q

2 2

k

/

m

Q

t

t

0 9.3

q

 2

E

sin((

t

t

0 )

k k

/

m

)

F

p km

  cot 

F

q

Q

1D harmonic oscillator

k

 /

q m

q

2 2

km q

cot  

Q k

2

k

/

m

sin(( 

t

t

0 )

Q

  2

Em

cos((

t

t

0 )

k

/

m

) 

t k

/

m

) 

t

0 9.3

q

p

  2

E

sin((

t

t

0 )

k k

2

Em

cos((

t

t

0 ) /

m

)

k

/

m

)

p

2 / 2

m

kq

2 / 2 

E

q

,

p

1D harmonic oscillator

9.3

Q

,

P

Canonical invariants

• •

What remains invariant after a canonical transformation?

d

i

Matrix A is a Jacobian

 2

j M

  1

A ij d

j

ζ

A ij

 

ζ

 (

η

) 

i

 

j

of a space transformation

9.5

From calculus, for elementary volumes: A

2

i M

AJ J

 1

d

i

 det(

A ij

) 2

i M

  1

d

i

A

• ~

A Transformation is canonical if

~

A

 

J J

   

0 1 1 0

 

J

 2

i M

d

  1 ~

AJ A

1

A

i

 ~

A J

 1

A

A

 1

A

 2 ~

A

 1

Canonical invariants

2

i M

  1

d

i

A

2

i M

  1

d

i

  2

i M

  1

d

i

For a volume in the phase space

V

  2

M

 

i

1

d

i

  2

M

 

i

1

d

i

 

V

 •

Magnitude of volume in the phase space is invariant with respect to canonical transformations:

V

 

V

 9.5

9.5

Canonical invariants

v u

What else remains invariant after canonical

transformations?

v

(

η

,

t

) 

v

η

 ~

A

u

(

η

,

t

) 

u

η

 

v

ζ

~

A

u

ζ

  

A

~ 

u

η

  

ij

         ~

A

i j

~ 

u

ζ

   

ζ

~

AJ A

   ~ 

u

ζ

ζ

(

η

) 

J

  

A

   ~ 

u

η

  

J

v

η

    ~ 

u

ζ

  

A J

~

A

v

ζ

    ~ 

u

ζ

  

J

v

ζ

   

u

q

  

u

η

 

J

v

η

   ~ 

u

ζ

 

J

v

ζ

• •

For M = 1

u

p

       0 1 1 0          

v

 

q v

p

For many variables

~   

u

η

 

J

v

η

 

i

         

u

q i

   

u

q

v

p i

 

v

q i

u

p

         

v

 

p

 

v q

        

u

q

v

q

v

p

u

p

u

p i

  9.5

9.5

Poisson brackets

•  

Poisson brackets :

~ 

u

η

 

J

v

η

 

i

  

u

q i

v

p i

 

v

q i

u

p i

   [

u

,

v

] •

Poisson brackets are invariant with respect to any canonical transformation

i

   

u

q i

 

p v i

 

v

q i

 

p u i

    

i

   

u

Q i

v

P i

 

v

Q i

u

P i

   Siméon Denis Poisson (1781 – 1840)

Poisson brackets

Properties of Poisson brackets :

[

F

,

F

]  0 [

F

,

G

]   [

G

,

F

] [

F

,

G

X

]  [

F

,

G

]  [

F

,

X

] [

F

,

GX

]  [

F

,

G

]

X

G

[

F

,

X

] [

aF

bG

,

X

] 

a

[

F

,

X

] 

b

[

G

,

X

] [

F

, [

G

,

X

]]  [

G

, [

X

,

F

]]  [

X

, [

F

,

G

]]  0 9.5

[

η

,

η

] 

Poisson brackets

~   

η

η

 

J

η

η

1 J 1

J

In matrix element notation:

[

q i ,q j

]  0 [

q i ,p j

]  

ij

[

η

,

η

]

lm

[

p i ,p j

]  0  [

η l ,η m

] [

p i ,q j

]  

J lm

 

ij

In quantum mechanics , for the commutators of coordinate and momentum operators:

9.5

[

q

ˆ

i , q

ˆ

j

]  [

i , p j

]  0 [

q

ˆ

i ,

ˆ

j

]   [ ˆ

i , q

ˆ

j

] 

i

 

ij

u

u

(

η

,

t

) 

Poisson brackets and equations of

du

J

dt

H

 

η

   ~ 

u

η

    

u

t du dt

  

motion

~ 

u

η

 

J

H

η

  

u

t

u

t

 [

u

,

H

]  [

u

,

H

]  

u

t

9.6

dH dt d

η

 

dt

H

t

η

t

 [

H

,

H

 [

η

,

H

] ]

dH dt

 

H

t

 [

η

,

H

]

Poisson brackets and conservation

du dt

  

laws

u t

 •

If

u

is a constant of motion

[

u

,

H

]

du

/

dt

 0 

u

t

 [

H

,

u

] •

If

u

has no explicit time dependence

[

H

,

u

]  0 •

In quantum mechanics , conserved quantities commute with the Hamiltonian

9.6

Poisson brackets and conservation laws

9.6

If

u

and

v

are constants of motion with no explicit time dependence

[

H

,

u

]  0 ; [

H

,

v

]  0 •

For Poisson brackets:

[

F

, [

G

,

X

]]  [

G

, [

X

,

F

]]  [

X

, [

F

,

G

]]  0 [

u

, [

v

,

H

]]  [

v

, [

H

,

u

]]  [

H

, [

u

,

v

]]  0

d

[

u

,

v

]  0

dt

If we know at least two constants of motion, we can obtain further constants of motion

Infinitesimal canonical transformations

9.4

F

 •

Let us consider a canonical transformation with the following generating function (

ε

– small parameter):

G

(

q

1 ,

q

2 ,...,

q M

,

P

1 ,

P

2 ,...,

P M

) 

m M

  1 (

q m

Q m

)

P m m M

 •  1

Then

p m q

m

H

m M

  1

P m

m

K

dF dt

m M

  1

P m

m

K

 

m M

  1    

G

q m q

m

 

G

P m

m

   

m M

  1 (

q

m

 

m

)

P m

m M

  1 (

q m

Q m

) 

m

Infinitesimal canonical transformations

9.4

m M

  1 •

Multiplying by dt

p m dq m

Hdt

m M

  1

P m dQ m

K dt

 

m M

  1    

G

q m dq m

 

G

P m dP m

   

m M

  1 (

P m dq m

P m dQ m

) 

m M

  1 (

q m dP m

Q m dP m

)

P m

 •

Then

p m

  

G

q m Q m

q m

  

G

P m K

H

Infinitesimal canonical transformations

9.4

P m

ζ

[

u

, •

Infinitesimal canonical transformations :

  •

η

p m

In symplectic notation:

   

J

G

q m

G

η

;

Q m

q m v

]     ~ 

u

η

  

J

v

η ζ

η

    

G

P m

A J

  

ζ

η

G

η

q m

 

1 ζ

   [

η

,

v

] 

1 J

v

η

[

η

,

G

] 

J

G

η

 

G

p m

η

 

η

    

J

 [

η

, 2 ...

G

η

G

]  

ζ

η

  [

η

,

G

]  

dt G

H

Evolution generation ζ

η

 [ ,

H

] 

dt

η

[

η

,

H

]  

d

η ζ

η

d

η

9.6

Motion of the system in time interval dt can be described as an infinitesimal transformation generated by the Hamiltonian

The system motion in a finite time interval is a succession of infinitesimal transformations, equivalent to a single finite canonical transformation

Evolution of the system is a canonical transformation!!!

Application to statistical mechanics

In statistical mechanics we deal with huge of particles numbers

Instead of describing each particle separately, we describe a given state of the system

Each state of the system represents a point phase space in the

We cannot determine the initial conditions exactly

Instead, we study a certain phase volume – ensemble – as it evolves in time

9.9

Application to statistical mechanics

Ensemble can be described by its density – a number of representative points in a given phase volume

D

N V

The number of representative points does not change

N

const

Ensemble evolution can be thought as a canonical transformation generated by the Hamiltonian

Volume of a phase space is a constant canonical transformation for a

V

const

9.9

Application to statistical mechanics

• •

Ensemble is evolving so its density is evolving too

dD dt

 

D

t

 [

D

,

H

]

const

On the other hand

D

N

 

const V const

D

t

 [

H

,

D

] •

Liouville’s theorem

In statistical equilibrium

D

t

 0  [

H

,

D

] 0 Joseph Liouville (1809 -1882) 9.9

Hamilton –Jacobi theory

We can look for the following canonical transformation, relating the constant (e.g. initial) values of the variables with the current ones:

q i

0

p i

0 

q i

0 (

q

1 ,...,

q M

, 

p i

0 (

q

1 ,...,

q M

,

p

1 ,...,

p

1 ,...,

p M

,

t

)

p M

,

t

) •

The reverse transformations will give us a complete solution

q p i i

q i

(

q

10 ,...,

q M

0 , 

p i

(

q

10 ,...,

q M

0 ,

p

10 ,...,

p M

0 ,

t

)

p

10 ,...,

p M

0 ,

t

) 10.1

10.1

Hamilton –Jacobi theory

p i

• • • •

Let us assume that the Kamiltonian is identically zero Then

K

 0 

i Q i

  

K

/

const

P i

;

P i

 0 ; 

i const

; 

K

/ 

Q i

Choosing the following generating function

F

F

2 (

q

1 ,...,

q M

,

P

1 ,...,

P M

,

t

)  

Q i i

Then, for such canonical transformation:

P i

0 ;  

F

2 / 

q i Q i

 

F

2 / 

P i K

H H H

(

q

1 ,..., (

q

1 ,...,

q M q M

, ,

p

1 ,..., 

F

2 

q

1

p

,...,

M

,

t

) 

F

2 

q M

  ,

t

)

F

2  / 

t

F

2 

t

  0 0  

F

2 / 

t

10.1

H

(

q

1 ,...,

q M

,

Hamilton –Jacobi theory

F

2 

q

1 ,..., 

F

2 

q M

,

t

)  

F

2 

t

 0

H

• •

Hamilton –Jacobi equation

S

 Sir William Rowan Hamilton

F

2 (1805 – 1865)

Hamilton’s principal function

S

S

S

(

q

1 ,...,

q M

, 

q

1 ,..., 

q M

,

t

)  

t

 0 •

Partial differential equation

First order differential equation

Number of variables: M + 1

Karl Gustav Jacob Jacobi (1804 – 1851)

Hamilton –Jacobi theory

H

(

q

1 ,...,

q M

, 

S

/ 

q

1 ,..., 

S

/ 

q M

,

t

)  

S

/ 

t

 0 •

Suppose the solution exists, so it will produce M + 1 constants of integration:

S

S

(

q

1 ,...,

q M

,  1 ,..., 

M

 1 ,

t

) 10.1

H

• 

One constant is evident:

S

(

q

1 ,..., 

S

/ 

t

 0 

S

(

q

1

q

,...,

M

,

q M

 1 , ,...,  1  ,...,

M

  1

M

, ,

t t

) )  

M

 1 •

We chose those M constants to be the new momenta

P i

 

i

While the old momenta

p i

 

S

(

q

1 ,...,

q M

, 

q i

 1 ,..., 

M

,

t

)

Hamilton –Jacobi theory

We relate the constants with the initial values of our old variables:

p i

0  

S

(

q

1 ,...,

q M

, 

q i

 1 ,..., 

M

,

t

)

q i

q i

0 ;

t

t

0 •

The new coordinates are defined as:

Q i

 

i

 

S

(

q

1 ,...,

q

,

M

   1

i

,..., 

M

,

t

)

q i

q i

0 ;

t

t

0 •

Inverting those formulas we solve our problem

q i p i

 

q i p i

(  1 ,..., 

M

(  1 ,..., 

M

, ,  1 ,...,  1 ,..., 

M

M

,

t

) ,

t

) 10.1

10.1

Have we met before?

dS dt

 

i

S

q i q

i

 

S

t p i

 

S

q i H

 

S

/ 

t

 0

dS dt

 

i p i q

i

H

L

Remember action?

S

 

Ldt

const I

 

t

1

t

2

Ldt

S

(

t

2 ) 

S

(

t

1 )

10.1

Hamilton’s characteristic function

When the Hamiltonian does not depend on time explicitly

dH

/

dt

 

H

/ 

t

 0 •

Generating function ( Hamilton’s characteristic

Q i p i dW dt

 

function )

W

P i

W

q i

F

2 

W

 

i

 

i

W

q i q

i

W

(

q

1 ,...,

q M

,  1 ,..., 

M

)  

i H p i q

i

H

(

q

1 ,...,

q M

, 

W

q

1

W

 

i p i dq i

,..., 

W

q M

const

)

Now we require:

10.3

Hamilton’s characteristic function

H

(

q

1 ,...,

q M

, 

W

q

1 ,..., 

W

q M

)   1 •

So:

K

H

 

W

t K

  1 

i

  

K

Q i

; 

i

 

K

P i

i

 0

P i

 

i

; 

i

 

i

1 ;

Q

1 

t

  1  

W

/   1 ;

Q i

 

i

 

W

/  

i

;

i

 1 •

Detailed comparison of Hamilton’s characteristic vs. Hamilton’s principal is given in a textbook (10.3)

Hamilton’s characteristic function

H

What is the relationship between

S

and

W

?

 

S

/ 

t

 0 

K S H

  1 

K W

One of possible relationships (the most conventional):

10.3

S

(

q

1 ,...,

q M

,  1 ,..., 

M

,

t

) 

W

(

q

1 ,...,

q M

,  1 ,..., 

M

)   1

t H

  1  0

Periodic motion

For energies small enough we have periodic oscillations ( librations ) – green curves

For energies great enough we msy have periodic rotations – red curves

Blue curve – separatrix trajectory – transition from librations to rotations bifurcation

10.6

10.6

Action-angle variables

H

(

q

, •

For either type of periodic motion let us introduce a new variable – action variable (don’t confuse with action!):

p

)  

p

J p

( 

q

,  

pdq

)

J

J

(  )

W

W

(

q

,

J

)  • •

A generalized coordinate conjugate to action variable is the angle variable :

w

 

W

J

The equation of motion for the angle variable:

H

(

J

) 

J

v

(

J

) 

const W

S



i

 

Ldt

const p i dq i

const

Action-angle variables

v w

vt

  •

In a compete cycle

w

  

w

q dq

   2

W

q

J dq

  

J

 

W

q dq

d dJ

pdq

10.6

d dJ J

 1  (

v

(

t

  )   )  (

vt

  ) 1 

v

v

 1 /  •

This is a frequency of the periodic motion

w

 

W

J p

 

W

q J

 

pdq

W

10.2

p

 

H

W

q

Example: 1D Harmonic oscillator

2 1

m

p

2 

m H

2   2

q

2 1 2

m

     

E

;  

W

q

  2 

m

2  2  2

k q

/ 2

m

  2

m

  1 

m

 2  2

q

2

S dq

 2

m

  1 

m

 2

q

2  2 

dq

  

t

  

S

  

m

2  

dq

1 

m

 2  2

q

2 

t

 1  arcsin

q m

 2 2  

t

  1 

Example: 1D Harmonic oscillator

arcsin

q m

 2 2  

t q

 2 

m

 2 sin(   

t

) 10.2

p

 

W

q

 2

m

 

m

2  2

q

2  2

m

 (

p

2 

m

2  2

q

2 ) / 2

m

E

  cos(  

E

 

t

)

q

 2

E m

 2 sin(   

t

)

p

 2

mE

cos(   

t

)

W

 2

m

  1 

m

 2

q

2 2 

dq m

q

0 /

p

0  tan(   

t

0 )

J

 

H

Action-angle variables for 1D harmonic

10.6

pdq p

 

W

q

  2

m

  

oscillator

2

m

 

m

2  2

q

2

m

2  2

q

2

dq

 2    2  0 cos 2

q

 2 

m

 2 sin

z zdz

 2     

J

 2  •

Therefore, for the frequency:

v

 

H

J

  2  

k

2  /

m

Separation of variables in the Hamilton-

10.4

Jacobi equation

Sometimes, the principal function can be

successfully separated in the following way:

S

 

i S i

( , ,..., 

M

,

t

) 

S q i

 1 

S H

(

q i

,

i

,  ,...,  ,

t

) 

i

 0

i

q i

1

M

t

For the Hamiltonian without an explicit time dependence:

S i

W i

 

i t H i

(

q i

, 

W i

q i

,  1 ,..., 

M

)  •

Functions

H i

may or may not be Hamiltonians

i