Transcript T Nakano
3Sep2013 ADAS Workshop Badhonnef, GE W transport studies in JT-60U T. Nakano Japan Atomic Energy Agency Tungsten: a candidate for PFCs in reactors T~104 eV n~1020 m-3 Wq+ (q~40-60) W divertor plates Tungsten: suitable for plasma facing components for reactors High melting point Low fuel retention Low sputtering yield (long life time) Unsuitable Highly radiative Narrow operation window as PFCs ( TDBTT< T <Trecrystalliation) Neutron damage ( transformation, etc ) Present study: Suppression of W accumulation W divertor plates in JT-60U W coated CFC tiles: 50 m with Re multi-layer 11 tiles (1/21 toroidal length ) Inner Div.(C) Dome (C) Standard configuration W tile W exp. configuration Outer Div.(C) W tile Diagnostics Short-wavelength VUV spectrometer – ( 0.5- 40 nm ) On-axis : W XLVI intensity (core) Long-wavelength VUV spectrometer ( 20 – 120 nm ) Off-axis: sensitivity calibration Visible spectrometer – sensitivity calibration PIN Soft X-ray (>3keV) CXRS Toroidal rotation TMS Te, ne FIR, CO2 line density Identification of VUV spectrum (on-axis) Steps of spectral analysis: 1. Wq+ spectrum <= FAC* 2. Adjust Fractional Abundance (FA) 3. Wq+ spectrum x FA 4. Sum-up 5. Comparison with observed spectrum •W41+ - W52+ were identified •Isolated W45+ line (W XLVI) at 6.2 nm is used for W density *) M.F.Gu, Can. J. Phys. 86 (2008) 675. http://sprg.ssl.berkeley.edu/~mfgu/fac/ 59+ n 3p 6.11 W 58+ 5.98 W 57+ 5.85 W 56+ 5.74 W 55+ 5.35 W 54+ 5.21 W 53+ 5.06 W 4.92 W 51+ 19 4x10 m 8 keV -3 52+ n 3d 4.71 W 50+ 4.58 W 49+ 4.44 W 48+ 4.30 W 47+ 4.17 W 46+ 4.05 W 19 4x10 m 4 keV -3 45+ 4s n 2.41 W 44+ 2.35 W 3s1/2 - 3p1/2 (Si) (P) (S) (Cl) (Ar) 3p3/2 - 3d3/2 60+ (Al) (K) (Ca) (Sc) (Ti) (V) (Cr) (Mn) (Fe) (Co) 4s1/2 - 4p3/2 19 6.59 W (Mg) 3p3/2 - 3d5/2 -3 6.73 W 4x10 m 12 keV 61+ 3s1/2 - 3p3/2 62+ 7.00 W 3p1/2 - 3d3/2 n 3l - 4l 3s IP (keV) 63+ 7.13 W (Na) (Ni) (Cu) (Zn) 0 1 2 3 4 5 Wavelength (nm) 6 7 8 9 * ¼ picsFWHM 0.5 keV 4x1019 m-3 Identification of VUV spectrum (on-axis) Steps of spectral analysis: 1. Wq+ spectrum <= FAC* 2. Adjust Fractional Abundance (FA) 3. Wq+ spectrum x FA 4. Sum-up 5. Comparison with observed spectrum •W41+ - W52+ were identified •Isolated W45+ line (W XLVI) at 6.2 nm is used for W density *) M.F.Gu et al., Astrophys. J. 582 (2003) 1241. http://sprg.ssl.berkeley.edu/~mfgu/fac/ Evaluation of W44+ ionization / W45+ recombination rate Excitation rate Measurement I W45+(6.2 nm): 4s 2S1/2 - 4p 2P3/2 = Ce45+ (4s, 4p)· nW45+ (4s)· ne 1S 1P I W44+(6.1 nm): 4s4s *) 4s4p 0 C P Ballance J.1 Phys. B 40 (2007) 247 ORNL* Close energy1 (199LLNL, ev andFAC, 204 eV) 44+excitation 21 45+: 4s 2 S 0 - 4s4p 2 P 1, 205 eV, 204 eV, 205 eV W Similar dependence of C199 W : 4senergy S1/2 - 4p P3/2, 201 eV, eV, 200 eV e W 10 10 45+ W 1.0 45+ W -10 10 44+ /W ~ 0.44 -11 10 1 10 2 3 10 Te ( eV ) 10 4 0.5 0.0 Ratio of Excitation rates 44+ -9 S 44+®45+ (Ioniz.rate) LANL ~ 1.50.44· 45+®44+ a (Recomb.rate) FAC ORNL Calculation -8 3 Excitation rate ( cm / s ) 10 Ioniz. Equi. E048141 NB Te ( keV ) 0.0 5 EC 0 Te ne 10 5 -3 0.5 10 6 19 IP 3 ne ( 10 1.0 15 0.3 12 0.2 8 0.1 4 W44+ 5 ~50+ W44+ Ratio W I 1 /I W45+ ,I W 45+ W ,I W50+ I Negative shear discharge -W accumulation occurs Te decrease from 10 keV to 5 keV During Te decrease, IW45+ and IW44+ increases, and then decreases 0.0 44+ W45+ SX ( ch ) 0 (a.u.) Ip ( MA ) 1.5 m ) PNB, PEC ( MW ) Waveform of Negative Shear discharge with EC injection 0 4 6 8 Time ( s ) 10 120 Te -scan data for W45+ / W44+ Comparison with ionization equilibrium 100 Cal: nW45+ / nW44+ = S44+ / a 45+ 10 Density ratio ( W 45+ /W 44+ ) FAC calculation reproduced measured W45+/W44+ Exp: nW45+ / nW44+ = I45+ / I44+ / 0.44 1 FAC 0.1 10 3 2 JT-60U experiment 3 Te ( eV ) 4 5 6 7 8 9 10 4 Accuracy of ionization/recombination rates calculated with FAC were evaluated in JT-60U experimental data Waveform of W accumulation shot Ctr Co Switch Co. to Ctr NBs. With decreasing VT, W XLVI increases, while W I is constant. W accumulation The same phase between W XLVI and SX(5) W XLVI is a measure inside the Sawtooth layer Systematic experiments on W accumulation against VT were performed Plasma rotation and central heating effective in avoiding W accumulation nW / ne 10 -3 Radiation collapse 3% 10 10 -4 -5 -200 Neutral Beam -100 0 Plasma rotation velocity ( km / s ) T. Nakano and the JT-60 team, J. Nucl. Mater. S327 (2011) 415. 100 3 Radative power rate ( W cm ) Radiative power rates calculated with FAC 10 -24 Lw* Lw = ! q LWq+ Fa(q) 4f 10 25+ - 27+ W38+ - 45+ W 28+ - 37+ W 46+ W -25 64+ W 10 70+ -26 10 2 2 4 6 8 10 3 2 4 6 8 10 4 2 4 W 63+ W Te ( eV ) Radiative power ( line radiation ) is highest between 2 – 4 keV Dominant charge states change at Te ~ 4 keV from highly raditive n=4-shell to lowly radiative n=3-shell Decrease of Lw *T Putterich et al Nucl. Fusion 50 (2010) 025012 3 Radative power rate ( W cm ) Comparison of calculated radiative power rate with NLTE5 workshop results** 10 10 10 -24 Lw* Lw = ! q LWq+ Fa(q) -25 -26 10 2 2 4 6 8 10 3 2 4 6 8 10 4 2 4 Te ( eV ) FAC calculation is in agreement with the NLTE5 results *T Putterich et al Nucl. Fusion 50 (2010) 025012 **Y Ralchenko et al AIP Proceedings 1161 (2009) 242 Radiative power from W ( MW ) Evaluated radiative power in agreement with bolometoric measurement 1 Radiation collapse DPBOL = Pbefore – Pafter 0.1 PNB = 15 MW Pradcore ~ 4 MW 0.01 (Te ~ 5 – 6 keV ) -200 -100 0 100 Toroidal rotation velocity at ! =0.05 ( km / s ) Negative Feed-Back seems to result in radiation collapse: W accumulation => Radiation increase => Te decrease => Lw increase => Radiation increase => … Summary and Conclusions W XLVI ( 6.2 nm ) intensity was measured with absolutely calibrated VUV spectrometers. Validity of Ioniz./Recomb. rate calculated with FAC was confirmed from W45+/W44+ density ratio under ionization equilibrium with coronal model. Quantitative measurement of -W density: ~ 10-3 in W accumulation cases. >> ITER allowable level (10-5). -W radiative power: agrees with bolometoric measurement Thank you! Intensity (a.u.) W63+(3s-3p,3p-3d) at 2 nm identified in JT-60U* 0.8 (a) 55+~61+ W O JT-60U 60+~63+ (3s-3p) 5+ identified in EBIT** were reproduced by the FAC calculation. 3s-3p at 2.3 nm 3p-3d at 2 nm 43+~45+ C 0.4 EBIT(NIST)** 3s-3p lines at 7-8 nm W (3p-3d) 7+ E049786 W (4s-4p) 13 keV 12 keV 3 keV 0.0 65+ F-like W 64+ Ne-like W 63+ Na-like W 62+ Mg-like W 61+ Al-like W 60+ Si-like W 59+ P-like W 58+ S-like W 57+ Cl-like W 56+ Ar-like W 55+ K-like W 54+ Ca-like W q Synthesized 65 (b) The W63+ line 2 3 (c) n 2p 64 n 63 3s 62 61 60 59 n 3p 58 57 at 2.3 nm will be a good diagnostic line Calculated by FAC 56 n 55 for ITER high temperature 12 keV, 4x1019 m-3 plasma. 3d 54 4 5 6 Wavelength ( nm ) 7 * J. Yanagibayashi, T. NakanoWavelength et al., accepted(nm) to J. Phys. B **Y. Ralchenko et al J. Phys. B 41 (2008) 021003 8 9 0 10 20 Assumed Fractional Abundance (%) Neutral Beam injectors • 11 positive-ion-based NBs (PNBs~85keV) • 2 co-tangential NB, 2ctr-tangential NBs, and 7 perp. NBs. Combination of tangential and perpendicular NBs leads to wide range of toroidal rotation. 2 ctr-tang. PNBs (~4.5MW) 7 perp. PNBs (~15.75MW) 21 2 co-tang. PNBs (~4.5MW) Comparison of time scales of atomic process: Colonal model is valid W45+ n=5 4f 4d 4p 3d104s Ionization Radiative transition 4.4x1011 s-1 Excitation 3 3d10 Rate coefficient ( m / s ) -14 W46+ 10 Excitation: W -15 10 -16 -17 (4p) -> n=4 or n=5 7.8x10-16 10 10 45+ Ionization: W 45+ (4p) -> W 46+ 1.2x10-17 -18 10 -19 10 10 tRadiative tExcitation tIonization 3 5 keV 4 10 Te ( eV ) = 1 / 4.4x1011 = 2.3x10-12 s = 1 / 7.8x10-16 4x1019 = 3.2x10-5 s = 1 / 1.2x10-17 4x1019 = 2.1x10-3 s tRadiative << tExcitation < tIonization ne Deexcitation is dominated by radiative transition W generation 2.5 0.25% 1.5 ( 10 20 -2 -1 m s ) 2.0 W generation flux 0.4% Te~ 20 eV 0.1% 1.0 0.5 0.0 0 2 8 6 4 22 -2 10 -1 Ion flux ( 10 m s ) W sputtering yield against D ~ 0.25% ( too high ) Possible W sputtering mechanisms • by impurity ( C ) • by high energy particles during ELM High energy particles seem a key for W sputtering Te~ 20 eV Time average ~ 1 s With decreasing VT, Yphys.decreases while Te increases Opposite trend Needs ELM-resolved data With decreasing VT, ELM frequency becomes high and DWdia decreases* Similar trend between Yphys. and DWdia W sputtering is possibly due to high energy particles expelled during ELM *) K.Kamiya et al., Plasma Phys. Control. Fusion 48 (2006) A131. Tungsten in Fusion Research Tungsten as a plasma-facing component Merit : high melting point => compatible with high temperature fusion plasma : low hydrogen (T) retention => safety, economy : low sputtering yield => long lifetime Cross section of ITER : low dust production Demerit : high Z (74) highly radiative ( allowable nW/ne < 10-5) accumulation in the core plasma W Plasma Issues of W transport study Understanding of Transport in core plasma* => accumulation mechanism in core plasma Local transport in divertor, global migration,,, Control of W generation, W penetration, W accumulation,,, Preparation of diagnostics at high Te ~ 15 keV ( ~ Wq+ : q > 60) Evaluation of W density, W ion distribution*, radiative power,,, Divertor *present study Requirement for W atomic data =>calculation with an atomic structure code,FAC* ① 二電子性再結合断面積の計算 ② JT-60U, LHD スペクトルの解析 *) M.F.Gu et al., Astrophys. J. 582 (2003) 1241. http://sprg.ssl.berkeley.edu/~mfgu/fac/ Significant difference in Ionization equilibrium Fractional Abandance 1 44+ 0.1 46+ 45+ 0.01 FLYCHK code Fractional Abandance 0.001 1 0.1 0.01 AUG* LLNL code 0.001 10 3 10 3 10 4 103 10 104 4 ) TTe( (eVeV ) e Te ( eV ) Atomic data ( Ioniz./Recomb. rates ) are still to be checked Atomic code calculation with FAC Experimental validation in JT-60U plasmas *T Putterich et al Plasma Phys. Control. Fusion 50 (2008) 085016 Ionization equilibrium: Difference between AUG* and FAC calculation Fractional Abundance Fractional Abundance 1 Still different: Shift to lower Te in AUG calculation 0.1 0.01 Ionization equilibrium: Sq+=>(q+1)+ ・nWq+ = a (q+1)+=>q+ ・nW(q+1)+ AUG* 1 45+ 46+ 44+ 4 2 0.1 S = Sdirect + Sexcit.autoioniz. a = aradiative + adie-electronic 4 2 0.01 4 2 0.001 5 *present study FAC 6 7 8 9 10 3 2 3 4 5 6 7 8 9 10 4 Te ( eV ) *T Putterich et al Plasma Phys. Control. Fusion 50 (2008) 085016 10 3 Ionization & recomb. rate ( m / s ) Accurate recombination rates required => Calculated with FAC -15 10 10 10 -16 -17 ADPACK mod** 45+ 44+ W -> W Loch Ioniz.* FAC DR. FAC Ioniz. 4d nl 44+ 45+ W -> W 4p nl FAC RR. 4s nl 5d nl 5p nl -18 10 2 Ionization 10 3 4 10 10 Te ( eV ) Te ( eV ) 5 Present Ref** FAC (DW) Loch code* (DW) W44+-46+ : FAC Dielectronic Recombination the others: ADPACK mod. Radiative Recombination 10 6 FAC ADPACK mod. ( x 0.39 ) *S Loch et al., Phys. Rev. A 72 (2005) 052716 **T Putterich et al., Plasma Phys. Control. Fusion 50 (2008) 085016 W confinement time: ~ 0.5 s inside sawtooth layer Present work: nWtotal = I WXLVI / Cexcite / ne / FFA(45+) / r ST ( m-3 ) GW = S/XB * I WI ( 1/s ) tW = nWtotal * VpST / GW ( s ) I W XLVI / I WI ne(0) ( a.u.) Significant W accumulation at negative toroidal rotation* Previous work*: W accumulation was evaluated in A.U. *) T. Nakano et al., Nucl. Fusion 49 (2009) 115024. Calculation model: Example for W 15+ Electron configuration: 4d10 4f11 5s2 4d10 4f11 5s1 5*1;5s=0 4d10 4f12 5s1 4d10 4f11 5s1 6*1 4d9 4f12 5s2 Atomic structure calculation Energy level: Excitation rate: Radiative transition rate: Coronal model Population normalized at the ground level Calculation model: Example for W 15+ 4d10 4f11 5s2Electron configuration: (Ground state) 4d10 4f11 5s2 4d10 4f11 5s1 5*1;5s=0 4d10 4f12 5s1 4d10 4f11 5s1 6*1 4d9 4f12 5s2 Excitation Radiative transition Coronal model 4d9 4f12 5s2 Term Energy ( eV ) Calculated W spectra JT-60U peripheral plasma: two peaks needed 41+ - 44+ 26+ - 36+ W W 35+ - 43+ C 1 W Intensity (a.u.) 4+ E049540 t=7-8s Observed Synthesized 0 D n =0 (n =3) Co-like Ni-like No Dn =0 transitions q of W q+ 45 Ge-like 40 D n =0 (n =4) Rb-like 35 Mo-like T e = 2 keV 19 ne = 3 x10 4 5 6 Wavelength (nm) ) * T. Nakano et al., Nucl. Fusion 49 (2009) 115024. 30 m -3 Ag-like 7 0.0 0.1 0.2 0.3 Fractional Abundance Contents Introduction Experimental set-up/Diagnostics - Absolute calibration of VUV spectrometers Results - Evaluation of Ionization equilibrium - Quantitative evaluation of W confinement time, density, radiative power - W generation Conclusions 2 ph / sr m nm s ) Intensity ( a.u. ) Intensity ( a.u. ) Intensity ( a.u. ) ( 10 18 Intensity Sensitivity Calibration of VUV spectrometers: “ Triple” Branching ratio method 1.0 2 2 2 C IV 3s S - 3p P Visible 2 C II 2p P - 3d D 0.5 0.0 400 500 500 250 2 600 Wavelength ( nm ) 2 C IV 2s S - 3p P 30 50 Wavelength ( nm ) 5 10 O VIII ( 1-2 ) 15 20 Wavelength ( nm ) 60 70 5 10 15 20 Wavelength ( nm ) 80 Short-VUV He II ( n=1-2 ) 25 30 Short-VUV O VIII (2-3) 0.05 2 C II 2p P - 3d D C VI ( n=2-4 ) 0.2 0.00 2 C VI (n=3-4 ) 40 C VI ( n=1-4 ) 0.10 Long-VUV He II ( n=1-2 ) 0 20 0.0 700 He II ( n=1-2 ) 25 30 Sensitivity Calibration of VUV spectrometers: 10 10 19 W XLVI 20 C VI ( n = 1-4 ) -1 10 21 -2 -1 Sensitivity 10 Branching ratio Coronal model ~ 1 / 4.2 He II ( n = 1-2 ) W XLVI C VI ( n = 2-4 ) 22 -1 ( ph sr m s (counts pixel) ) 10 18 5 10 15 20 25 30 Wavelength ( nm ) Absolute sensitivity ~ 6.2 nm was obtained W XLVI is used for W density measurement