No Slide Title
Download
Report
Transcript No Slide Title
Atomic Metal Ion Chemistry
in the Gas Phase
Diethard K. Bohme
Ion Chemistry Laboratory
Department of Chemistry
Centre for Research in Mass Spectrometry
Centre for Research in Earth & Space Science
York University, Toronto, Canada
Department of Chemistry
Memorial University
October 2, 2007
Chemical Mass Spectrometry
Create ions (in an ion source).
Look at ions (with a mass spectrometer).
resolve m/z, (dissociate), count
Look at ions react (in a reaction cell).
Ernest Rutherford:
“Ions are jolly little beggars, you can almost see them“
Chemical Mass Spectrometry at York, since 2000 :
2000: Invention of ICP/DRC/MS
(S. Tanner, V. Baranov, then at MDS/SCIEX)
- Dynamic Reaction Cell (DRC) for the chemical
resolution of isobaric interferences in elemental analysis
- requires chemical data base for atomic-ion reactions.
NSERC/NRC/MDS SCIEX/York Partnership.
ICP/SIFT tandem mass spectrometer
2003: Suppression of chemical noise in MS, etc.
(T. Covey, MDS SCIEX)
NSERC/MDS SCIEX/York Partnership
ESI/qQ/SIFT/QqQ multipole ms
OUTLINE
1. ICP/SIFT tandem mass spectrometer
(the universal atomic ion chemical mass spec)
- Periodicities in Reactivities
- The Special Case of Lanthanides
- Atomic Cations as Catalysts
- Influence of Ligation
- Chemical Resolution of Atomic Isobars in
ICP/DRC/MS: a Case Study
2. ESI/qQ/SIFT/QqQ multipole mass spectrometer
(the ultimate chemical mass spectrometer)
- Chemical Reactions of Atomic Metal Dications
- Multiply-Charged Metallated Biological Ions
1.
The Universal Atomic Ion
Chemical Mass Spectrometer
The ICP/SIFT/QqQ instrument
Argon Plasma
T
u
b
r
o
P
u
m
p
H
e
u
i
l
m
P
a
l
s
m
a
R
e
a
g
e
n
t B
o
l
w
e
r
n
Ie
lt
S
o
u
c
r
e
n
Ie
lt
T
p
i
r
e
l
Q
u
a
d
u
r
p
o
e
l
5500 K
P = 1 atm
D
u
f
i
s
o
i
n
P
u
m
p
T
u
b
r
o T
u
b
r
o
P
u
m
p P
u
m
p
Aqueous solution
of the atomic salt
is injected via a
nebulizer into
the Ar plasma
__________________________________________________________________________________________________________
An Inductively-Coupled Plasma / Selected-Ion Flow Tube Mass Spectrometer Study of the Chemical
Resolution of Isobaric Interferences. G.K. Koyanagi, V.I. Baranov, S. Tanner and D.K. Bohme, J. Anal. At.
Spectr. 15, 1207-1210 (2000).
Periodic Table of Atomic Salt Solutions
Attractive Features of the ICP Ion Source
intense: ca.1011 ions s-1 in first quad (Ar+ with
0.1% metal ions), ca. 107 ions cm-3 in flow tube
defined: thermal population of electronic states
at ca. 5500 K which relaxes toward 295 K.
rapid: time to change metal ions ca. 30 s
stable: not hours but weeks
versatile: almost universal source of atomic
ions
Reactions of atomic cations: Nb+ with N2O
10 3
+
N b N bO 2
+
Primary Oxidation and Nitration
+
N bO 2 ·(N 2 O ) 2
+
N bN O ·(N 2 O ) 2
Io n S ig n al
10 2
+
N bO 2 ·(N 2 O ) 3
+
N bO 2 ·N 2 O
N bO
N bN O
+
Nb+ + N2O NbO+ + N2
NbN+ + NO
Further Oxidation
NbO+ + N2O NbO2+ + N2
NbN+ + N2O NbNO+ + N2
Clustering with N2O
+
10 1
+
N bN O ·N 2 O
+
N bN O ·(N 2 O ) 3
N bN
+
NbO2+ + N2O NbO2(N2O)+
NbO2(N2O)+ +N2O NbO2(N2O)2+
NbO2(N2O)2+ +N2O NbO2(N2O)3+
NbNO+ + N2O NbNO(N2O)+
+ +N ONbNO(N O) +
0.0
1.0
2.0
3.0
4.0
NbNO(N
O)
2
2
2
2
17
-1
N 2 O flow /(10 m olecules s )
+
NbNO(N2O)2
________________________________________________________________
+N2ONbNO(N2O)3+
V.V. Lavrov et al., J. Phys. Chem. A 106 (2002) 4581.
10 0
Surfing the Periodic Table
H
He
59 atomic cations
Li Be
Na Mg
K
C a S c Ti
Rb Sr
Y
V
B
C
N
O
F
Ne
Al
Si
P
S
Cl Ar
Cr M n Fe Co Ni Cu Zn Ga Ge As Se Br Kr
Z r N b M o Tc R u R h P d A g C d In S n S b Te
C s B a L a H f Ta W R e O s
Ir
I
Xe
Pt Au Hg Tl Pb Bi Po At Rn
Fr Ra Ac
Ce Pr Nd Pm Sm Eu G d Tb Dy Ho Er Tm Yb Lu
Some MO+ oxide ions
15 different molecules
O2, NO, N2O, NO2, CO2, CS2, OCS, D2O,
NH3, CH4, CH3F, CH3Cl, SF6, C6H6, C6F6
1000
5000
2500
Web Data Base
61 atomic cations x 15 molecules = 915 reactions !!
http://www.chem.yorku.ca/profs/bohme/research/research.html
Periodicities in Reactivities
R e a c tio n s o f a to m ic c a tio n s w ith O 2
1.0
0.8
0.6
K
+
Ca
+
V
R e a ctio n b ra n ch in g ra tio / E fficie n c y (k/ k c )
0.4
+
Sc
Ti
0.2
+
Cr
+
Mn
+
Fe
+
+
+
Co
Ni
+
+
+
Cu Z n
(2 )
( 2)
(2 )
(2 )
6 1
8
9
10
+
+
Ga Ge
As
+
+
Se
M+ + O2
0.0
0
s
s
1
1 1
2 1
d s d s
d
4
d
5
5 1
d s
d s
d
d
d
10 1
d s
p
0
p
1
p
2
p
3
1.0
0.6
( 2)
(2 )
0.8
Rb
+
Sr
+
+
0.4
Y
0.2
+
Zr
+
Nb
+
M o Tc
+
+
+
Ru Rh
( 2)
+
P d Ag
+
Cd
+
In
+
+
Sn Sb
+
Te
+
( 2)
0.0
s
0
s
1
s
2
2 1
d
d s
4
d
5
5 1
d s
d
7
d
8
d
9
d
10
10 1
d s
p
0
p
1
p
2
p
3
MO+ + O
M + (O 2 )
1 .0
0 .8
0 .6
Cs
+
Ba
+
La
0 .4
+
Hf
Ta
(2 )
0 .2
(2)
+
+
+
+
(2 ) R e +
Ir
O
s
+
W
( 2)
Pt
+
+
Au H g
(2 )
+
Tl
+
Pb
+
Bi
+
Po
+
(2 )
0 .0
s
0
s
1
d
2
1 2
3 1
d s d s
4 1
d s
5 1
d s
6 1
d s
7 1
d s
d
9
d
10
10 1
d s
p
0
p
1
p
2
p
3
1 .0
0 .8
Sm
0 .6
0 .4
Ce
+
Pr
+
Nd
+
Pm
+
Eu
+
+
Dy
Gd
+
Tb
+
Ho
+
+
Er
+
Tm
+
Yb
+
Lu
+
O s+ + 2O 2
O sO + + O 3
0 .2
0 .0
1
f d
2
3 1
f s
4 1
f s
5 1
f s
6 1
f s
7 1
f s
7
1 1
9 1
f d s f s
10 1
f s
11 1
f s
12 1
f s
13 1
f s
O -a tom tra n s fer
O 2 c lu ste r ing
N o t m e a su re d
2n d ord e r O -a to m tra n s fe r
14 1
f s
14 2
f s
N o rea c tion
G .K . K o ya n a g i e t a l., J. P h ys. C h e m . A 1 0 6 (2 0 0 2 ) 4 5 8 1 .
R e a c tio n s o f a to m ic c a tio n s w ith C O 2
1 .0
0 .8
0 .6
K
+
Ca
+
+
Sc
Ti
+
V
0 .4
+
Cr
(4 )
+
+
Mn
(2 )
(3 )
+
Fe
+
Co
(2 )
(2 )
Ni
+
+
Cu
(2 )
(3 )
+
Zn
+
+
Ga Ge
(2 )
As
+
Se
+
(2 )
(2 )
R e a c tio in b ra n ch in g ra tio /E fficie n c y (k/k c )
0 .2
0 .0
0
s
s
1
1
1
d s
2
d s
1
d
4
d
5
5
d s
6
1
1
d s
d
8
d
9
d
10
d
10
1
s
p
0
p
1
p
2
p
M+ + CO2
3
1 .0
(2 )
0 .8
0 .6
Rb
+
0 .4
Sr
+
Y
+
Zr
+
Nb
+
Mo
(2 )
0 .2
0
1
s
Tc
+
s
2
2
d s
1
d
4
d
5
(2 )
(2 )
5
d s
+
+
Ru Rh
(2 )
0 .0
s
+
1
d
7
d
8
+
Pd
Ag
Cd
+
In
+
Sn
+
Sb
+
+
Te
9
d
10
d
10
s
1
p
0
p
1
2
p
p
M + (C O 2 )
3
1 .0
(2 )
0 .8
0 .6
Cs
+
Ba
+
Hf
+
Ta
(2 )
+
(3 )
La
+
W
0 .4
0 .2
MO+ + CO
(2 )
(2 )
d
+
Re
(2 )
+
+
Os
+
Ir
(3 )
+
Pt
(3 )
+
Au
+
Hg
+
Tl
+
Pb
(2 )
(2 )
+
(2 )
Bi
+
+
Po
(2 )
0 .0
s
0
s
1
d
2
1
d s
2
3
d s
1
4
d s
1
5
d s
1
6
d s
1
7
d s
1
d
9
d
10
d
10
s
1
p
0
p
1
p
2
p
3
1 .0
0 .8
0 .6
Ce
+
Pr
+
0 .4
Nd
+
Pm
+
Sm
+
(3 )
0 .2
Eu
+
Gd
+
Tb
+
Dy
+
Ho
+
Er
+
Tm
+
Yb
+
Lu
+
(2 )
0 .0
1
f d
2
3
f s
1
4
f s
1
5
f s
1
O -a to m tra n s fe r
6
f s
1
7
f s
1
7
1
f d s
1
9
f s
1
f
10
s
1
C O 2 c lu s te rin g
f
11
s
1
f
12
s
1
f
13
s
1
f
14
s
1
f
14
s
2
N o t m e a s u re d
G .K . K o ya n a g i, D .K . B o h m e , J. P h ys.C h e m . A 1 1 0 (2 0 0 6 ) 1 2 3 2 .
R e a c tio n s o f a to m ic c a tio n s w ith N 2 O
1 .0
0 .8
0 .4
K
+
+
Ca Sc
+
Ti
+
V
+
Cr
(2 )
0 .2
R e a c tio in b ra n c h in g ra tio /E ffic ie n c y (k /k c )
(2 )
(2 )
0 .6
+
M n Fe
+
(3 )
+
Ni
Co
(2 )
+
+
+
+
Cu Zn
(3 )
+
Ga Ge
+
As
(2 )
+
Se
+
0 .0
s
0
s
1
1
2
1
d s d s
1
d
4
d
5
5
d s
6
1
1
d s
d
8
d
9
d
10
d
10
s
1
p
0
p
1
p
2
p
3
M + + N 2O
1 .0
0 .8
0 .6
Rb
+
Sr
+
M o T c + R u + R h + P d + A g + C d + In + S n + S b + T e +
+
(2 )
0 .4
0 .2
Y
+
Zr
(2 )
+
Nb
0 .0
s
0
1
s
2
s
2
d s
1
d
(2 )
(2 )
(2 )
(2 )
(2 )
+
4
d
5
5
d s
1
d
7
d
8
d
9
d
10
d
10
s
1
p
0
p
1
p
2
p
3
MO+ + N2
MN+ + NO
1 .0
0 .8
0 .6
Cs
+
+
Ba La
0 .4
+
Hf
0 .2
0 .0
s
0
s
1
d
2
+
Ta
(2 )
(2 )
1
3
2
d s d s
1
+
W
+
(3 )
4
d s
1
Re
(2 )
5
d s
1
+
Os
+
Ir
6
1
+
+
Pt Au Hg
(2 )
(4 )
d s
+
+
Tl
+
Pb
+
Bi
+
Po
+
M + (N 2 O )
(2 )
(3 )
7
d s
1
d
9
d
10
d
10
s
1
p
0
p
1
p
2
p
3
1 .0
(2 )
0 .8
Pr
0 .6
0 .4
Ce
+
+
Nd Pm
+
Sm
+
+
Eu
+
Gd
Tb
+
+
Dy
+
Ho
+
Er
+
Tm
+
Yb
+
Lu
+
0 .2
0 .0
1
f d
2
3
f s
1
4
f s
1
5
f s
1
6
f s
1
7
f s
1
7
1
1
9
f d s f s
1
10
f s
1
O -a to m tra n s fe r
N 2 O c lu s te rin g
N o t m e a s u re d
N o re a c tio n
11
f s
1
12
f s
1
13
f s
1
14
f s
1
14
f s
2
N -a to m tra n s fe r
V .V . L a vro v e t a l., J. P h ys. C h e m . A 1 0 6 (2 0 0 2 ) 4 5 8 1 .
R e a c tio n s o f a to m ic c a tio n s w ith S F 6
1 .0
(2 )
0 .8
R e a ctio n B ra n ch in g R a tio /E fficie n cy (k/k c )
0 .6
0 .4
K
(3 ) (4 )
+
Ca
0 .2
Sc
+
+
Ti
1
2
+
V
Cr
+
+
+
M n Fe
+
Co
+
(2 )
+
Ni Cu
(2 )
+
+
Zn Ga
1 .0
0
s
1
1
d s d s
(2 )
0 .8
0 .6
Rb
Sr
0 .0
s
0
4
d
(3 )
Y
0 .2
d
s
+
s
Zr
2
Nb
2
d s
(2 )
0 .8
Mo
+
+
1
Cs
+
Ba
+
La
0 .2
d s
1
6
d s
1
d
4
d
(3 )
(3 )
+
+
Hf Ta
+
0
s
1
d
5
0 .6
(3 )
W
+
As
0 .4
0 .2
Ce
+
2
1
d s
Pr
d
10
d
10
s
1
p
0
p
1
p
Se
2
p
+
3
2
3
d s
Nd
+
+
A g C d + In + S n + S b + T e +
5
d s
+
1
d
1
7
d
8
d
+
R e O s + Ir +
9
Pt
d
10
10
d
+
Pm
+
s
1
p
0
p
1
p
2
p
3
+
+
A u H g + T l+ P b + B i+ P o +
4
d s
1
5
d s
1
6
d s
1
(2 )
7
d s
1
(2 )
d
9
d
(2 )
10
d
10
Sm
+
Eu
+
Gd
+
Tb
+
Dy
s
1
Er
+
Ho
p
(2 )
(2 )
(2 )
(2 )
+
9
d
+
(2 ) (2 )
(2 )
(2 )
8
+
+
(4 )
1 .0
0 .8
d
+
Tc Ru Rh Pd
0 .0
s
1
+
0 .6
0 .4
5
5
+
(4 )
+
0 .4
1 .0
1
Ge
(2 )
0 .0
s
+
0
p
1
(2 )
+
Tm
p
2
(2 )
+
Yb
p
M + + SF6
M F n + + S F 6 -n
M + (S F 6 )
S F n + + M F 6 -n
3
(2 )
+
+
Lu
+
n up to 4 !
0 .0
1
f d
2
3
f s
4
1
f s
M Fn
+
1
+
M SF5
5
f s
1
6
f s
1
7
f s
1
7
1
f d s
1
9
f s
1
10
f s
1
11
f s
1
12
f s
1
13
f s
1
14
f s
1
14
f s
2
+
S F 6 c lu s te rin g
SFn
N o re a c tio n
N o t m e a s u re d
C . P in g a n d D .K . B o h m e , J. P h ys.C h e m . A , in p re p a ra tio n .
OA(O) = 119 kcal mol-1
0
10
-1
k/kc
10
MO2+ M+ + O2 MO+ + O
-2
10
1st Row
2nd Row
3rd Row
Lanthanides
-3
10
-4
10
0
50
100
150
OA (M+) /kcal mol-1
200
0
10
1st Row
2nd Row
3rd Row
Lanthanides
-1
10
k/kc
M+N2O M+ + N2O MO+ + N2
-2
10
100
OA(N2) = 40 kcal mol-1
10-1
10-2
-3
10
10-3
Lanthanides
-4
10
40
0
40
80
120
80
120
160
OA (M+) /kcal mol-1
160
200
10-4
200
240
Kinetic barrier due to electron interaction during bond
redisposition (conventional activation barrier).
10.0
DH0 /(kcal mol-1)
TS
+
0.0
-10.0
+
-20.0
3F
Rh+
-30.0
6D
Fe+
-115.0
1S
Y+
4.0 x 10-13 3.7 x 10-11 >6.4 x 10-10
B3LYP/sdd/6-311+G*
Kinetic Barriers Due to Constraints in Electronic Spin
Slow and spin forbiddena
for formation of ground state MO+.
k
DrHo
(cm3 s-1) (kcal mol-1)
Cr+ (X6S) + N2O CrO+ (4-) + N2 <1.5x10-13
Mn+ (7S) + N2O MnO+ (5) + N2 <10-13
Co+(3F) + N2O CoO+ (5D) + N2
<1.1x10-12
Ni+(2D) + N2O NiO+ (4-) + N2
<6.3x10-13
Mo+ (6S) + N2O MoO+ (4-) + N2 <3.4x10-13
Ru+(4F) + N2O RuO+ (6+) + N2 <3.3x10-13
a If
-46
-28
-35
-33
-77
-48
overall spin is not conserved, a kinetic barrier is present because a curve
crossing is required to change the spin multiplicity so that overall spin can be
conserved.
The special Case of Lanthanides
Ln•+ + XO [Ln••+ O ]* Ln::O+ + X
X
Two non-f valence electrons are required for the
lanthanide cation to participate in bonding with O.
This can be achieved by the promotion of a 4f electron:
4fn5d06s1 to 4fn-15d16s1.
(For La+, Ce+, and Lu+, the promotion corresponds to d2 d1s1 or s2 d1s1)
Exothermic reactions controlled by
the availability of valence electrons for bonding.
So can expect a correlation between reaction rate
and electron promotion energy PE !
Barriers to Electron Promotion
Ln+ + N2O LnO+ + N2
1 0 -1 1
60
80
1 0 -1 2
100
n-1
1
5d 6s
1
-1
1
40
0
20
n
1 0 -1 0
4f 5d 6s 4f
3
-1
-1
k/(cm m olecules s )
0
Prom otion E nergy/(kcal m ol )
1 0 -9
La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
____________________________________________________
G.K. Koyanagi, D.K. Bohme. J. Phys. Chem. A 105, 8964 (2001)
Arrhenius would be interested!
kexp= kc e-PE/RT
Atomic Ions as Catalysts
O-atom Transport Catalysis
M+ + N2O MO+ + N2
MO+ + CO M+ + CO2
M+
N2O
CO2
N2
MO+
CO
N2O + CO N2 + CO2
Need:
OA(N2) < OA(M+) < OA(CO)
40 kcal mol-1 < OA(M+) < 127 kcal mol-1
No kinetic constraints
GAUSSIAN98 B3LYP/sdd/6-311+G*
N 2O + C O N 2 + C O 2
TS
D H /k ca l m o l -1
CO
N 2O
6
D Fe+
CO
4 7 .2
0 .9
1 4 .9
TS
N2
CO
6 1 .8
0 .9
CO
2 2 .9
6 4 .1
CO
N
O
C
Fe
8 6 .7
TS
3 0 .6
4 7 .8
N2
F e + + N 2 O F eO + + N 2
N2
CO2
N2
6
D Fe+
F eO + + C O F e + + C O 2
V. Blagojevic, G. Orlova, D. K Bohme, J. Am. Chem. Soc. 127 (2005) 3545.
Establishing a Catalytic Cycle in the Reaction Region
Oxidizing
reagent
Reducing
reagent
N 2O
CO
M+
MO+
Catalytic
Cycle
Key features
• Moderate pressure in the flow tube (0.35 Torr He)
• Nearly universal source of single charged atomic cations
Catalyzed Reduction of N2O by CO
N2O
N2
M+
MO+
CO2
CO
N2O + CO N2 + CO2
Investigated with 59 cations (26 in the TD window)
Observed with10 atomic cations:
Ca+, Fe+, Ge+
Sr+
Ba+, Os+, Ir+, Pt+
Eu+, Yb+
N2O + CO N2 + CO2
+
Ca Sc
+
K
0
s
s
s
0
+
+
V
1 1
ds ds
+
1
s
+
Ti
2 1
1
+
Rb Sr
+
4
d
5
6 1
5 1
ds ds
d
8
d
9
d
10
10 1
d s
p
0
p
1
2
p
2
2 1
ds
d
4
d
5
5 1
ds
d
7
8
d
d
9
d
10
10 1
d s
p
0
p
1
p
2
+
0
Ce
s
+
1
Pr
d
+
1 2
6 1
4 1
1 2 3 1
9
d s d s d s d5s1 d s d7s1 d
Nd
+
+
(Pm )
10
d
10 1
d s
p
0
p
1
+
(Po )
2
p
+
Lu
p
+
Sm Eu+ Gd+ Tb+ Dy+ Ho+ Er+ Tm+ Yb
3
3
+
(2)
(2)
fd
2
p
3 1
fs
4 1
fs
5 1
fs
6 1
fs
7 1
7 1 1
9 1
fs fds fs
in range and catalytic
in range but not catalytic
10 1
11 1
f s f s
12 1
f s
13 1
f s
outside range
+
OA(M ) not available
14 1
f s
59 cations
were studied
3
+
Cs Ba La+ Hf+ Ta+ W+ Re+ Os+ Ir+ Pt+ Au+ Hg+ Tl+ Pb+ Bi+
s
p
+
+
+
+
+
+
+
+
+
+
Zr Nb+ Mo+ (Tc+) Ru Rh Pd Ag Cd In Sn Sb Te
+
Y
s
d
+
+
+
+
+
+
+
+
+
Cr Mn+ Fe Co Ni Cu Zn Ga Ge As Se
14 2
f s
26 lie in the
TD window
10 are
catalytic
Catalytic reduction of NxOy by CO
NO2
(2) NO
N2O
N2
M+
CO2
MO+
M+
CO
MO+
CO
M+
MO+
CO2
CO2
CO
Observed for:
Fe+, Ge+
Sr+
Ba+, Os+, Ir+
Eu+, Yb+
Blagojevic et al.
Angew. Chem. Int. Ed.
2003, 42, 4923-4927
Catalytic reduction of NxOy by H2
NO2
(2) NO
N2O
N2
M+
H2O
MO+
M+
H2
MO+
H2
M+
MO+
H2O
H2O
H2
Observed for:
Ca+,Fe+,
Sr+,
Os+, Ir+
Influence of Ligation
Metal-Cation Ligation
on Curved Carbonaceous Surfaces
+
H
Fe
H
H
H
+
Fe
H
H
H
+
Fe
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
+
H
+
Fe
H
H
H
H
H
H
H
H
Fe
Reactions of atomic cations with benzene
1.0
0.8
0.6
Reaction Branching Ratio/Efficiency (k/kC)
0.4
+
+
+
Ti
Ca Sc
K
+
+
+
+
+
+
+
+
+
Cr Mn+ Fe Co Ni Cu Zn Ga Ge
V
+
As
+
Se
+
0.2
0.0
s
0
s
2 1
1
1 1
d s d s
d
4
5
d
6 1
5 1
d s d s
d
8
d
9
d
10
10 1
1
0
d s
p
p
p
2
p
3
1.0
0.8
0.6
+
Rb Sr
+
+
+
Zr Nb+ Mo+ (Tc
Y
0.4
+
)
+
+
+
+
Ru Rh Pd Ag Cd
+
In
+
+
+
Sn Sb Te
+
0.2
0.0
s
0
s
1
s
2
4
2 1
d
d s
d
5
5 1
d s
7
d
8
d
d
9
d
10
10 1
d s
p
0
p
1
p
2
3
p
1.0
Ba
0.8
0.6
Cs
+
+
La
+
+
+
+
+
+
+
+
Hf Ta W+ Re Os Ir Pt Au+ Hg Tl
+
Pb
+
Bi
+
+
(Po )
0.4
0.2
0.0
1.0
0
s
s
1
d
2
6 1
4 1
1 2
3 1
9
d s d s d s d5s1 d s d7s1 d
d
10
10 1
d s
p
0
p
1
2
p
+
Lu
p
3
M+ + C6H6
M+(C6H6)
C6H6+ + M
MC6H4+ + H2
MC4H4+
+ C2H2
0.8
0.6
Ce
+
Pr
+
0.4
0.2
0.0
1 2
+
+
(Pm )
+
Sm Eu+ Gd+ Tb+ Dy+ Ho+ Er+ Tm+ Yb
+
(2)
(2)
f d
Nd
3 1
f s
4 1
f s
5 1
f s
2 Adduct
C2H2 elim.
6 1
f s
7 1
7 1 1
9 1
f s f d s f s
3 Adducts
H2 elim.
10 1
f s
11 1
f s
12 1
f s
13 1
f s
14 1
f s
14 2
f s
4 Adducts
Electron transfer
G.K. Koyanagi, D.K. Bohme. Int.J.MassSpectrom. 227 (2003) 563.
S tru ctu res at L Y P /L an L 2D Z
10 4
La
+
L a·(C 6 H 6 ) 3
+
L a·(C 6 H 6 ) 2
–1
Ion S ig nal/(s )
10 3
10
+
L a·C 6 H 6
2
+
L aC 6 H 6 +
L a(C 6 H 6 ) 2 +
L a(C 6 H 6 ) 3 +
L a(C 6 H 6 ) 4 +
10 1
L a·(C 6 H 6 ) 4
+
10 0
0 .00
0 .2 5
0.50
0 .7 5
C 6 H 6 F low /(10
18
1.00
1.25
1 .5 0
1.75
–1
m olecules s )
M + B e n z e n e C h e m is try
M + + C 6H 6 + H e M C 6H 6+ + H e
IC P M +
Sc
Ti
V
Cr
Mn
Fe
Co
Ni
Cu
Zn
d 1s1
d2s1
d4
d5
d 5s1
d 6s1
d8
d9
d 10
d 10s1
Y
Zr
Nb
Mo
Tc
Ru
Rh
Pd
d4
d5
d 5s1
d7
d8
Re
Os
Ir
d5s1
d 6s1
s2
d2s1
La
Hf
Ta
W
d2
d 1s2
d3s1
d 4s1
d 7s1
Ag
Cd
d9
d10
d 10s1
Pt
Au
Hg
d9
d10
d10s1
Sc
3
E2
Y
3
Ti
4
A1
Zr
5
Hf
B2
Nb
5
E2
La
V
Cr
6
A1
Mo
7
A1
Tc
4
A1
Ru
4
E1
Ta
Fe
Mn
W
Re
Co
3
A1
Rh
Ni
2
B2
1
Ag
Pt
Au
1
Ir
Zn
A1
Pd
A2
Os
Cu
Cd
A1
Hg
IC P /S IF T re s u lts fo r M C 6 H 6 + + O 2
M C 6H 4O + + H 2O
+
M O 2+ + C 6H 6
B ra n c h in g R a tio a n d O v e ra ll R e a c tio n E ffic ie n c y , k o b s /k c a p
M C 6H 6O + O
C 6H 6+ + M O 2
M + + (C 6 H 6 O 2 )
1 .0
0 .8
Cr
Mn
Fe
Co
Ni
Cu
Zn
Tc
Ru
Rh
Pd
Ag
Cd
0 .6
0 .4
Sc
Ti
V
0 .2
0 .0
1 .0
0 .8
0 .6
0 .4
Y
Zr
0 .2
Nb
Mo
NR
NR
0 .0
1 .0
Re
0 .8
Os
Ir
Pt
Au
Hg
0 .6
0 .4
La
Hf
Ta
W
0 .2
NA
0 .0
O 2 a d d itio n
a d d ./d e h yd r.
b e n z. a b str.
C 2 H 2 e lim .
O -tra n sfe r
m e ta l a b str.
lig . sw itc h
n o t a va ila b le o r n o n -re a ctio n
M C 4 H 4 + + (C 2 H 2 O 2 )
M C 6H 6O 2+
D . C a ra im a n , D .K . B o h m e . J. P h ys. C h e m . A 1 0 6 (2 0 0 2 ) 9 7 0 5 7 .
Overview of Primary Chemistry
+
Reaction Channels for M + O2
+
MO + O
+
MO2
+
M + O2
O-atom transfer
O2 addition
Reaction Channels for
M
+
+ O2
+
MC6D6O + O
+
MC6D6O2
+
C6D6 + MO2
+
MO2 + C6D6
+
+
MC6D6
+ O2
O-atom transfer
O2 addition
Metal abstraction
Ligand switching
MC6D4O + D2O
O2 Addition/Dehydration
+
MC4D4 + (C2D2O2) Acetylene elimination
+
M + (C6D6O2)
Benzene abstraction
1.0
0.8
Catalytic oxidation of benzene
+ C6H6 MC6H6
+
+
TiBz
+
VBz
+
CrBz
+
MnBz
+
FeBz
+
CoBz
+
NiBz
+
CuBz
+
ZnBz
+
0.4
0.2
B ra n c h in g R a tio s a n d k /k c
M+
ScBz
0.6
M = Fe, Cr, Co
0.0
1.0
0.8
YBz
+
ZrBz
+
HfBz
+
NbBz
+
+
MoBz TcBz
+
+
RuBz RhBz
+
PdBz
+
AgBz
+
CdBz
+
0.6
0.4
0.2
NA
0.0
1.0
0.8
LaBz
+
TaBz
+
WBz
+
ReBz
+
OsBz
+
IrBz
+
PtBz
+
NR
NR
+
HgBz
AuBz
+
0.6
0.4
0.2
NA
0.0
O 2 addition
O atom transfer
MC6H6+ + O2 M+ + (C6H6O2)
O +O
addition/dehydration
metal abstraction
benzene abstraction
ligand switching
acetylene elimination
not available or non-reaction
DH = 62.5±2.5 kcal mol-1
O
C6H6 + O2 (C6H6O2)
O
DH = 29.5±0.1kcal mol-1
+O
DH = 16.8±0.3 kcal mol-1
OH
O
O
DH = 14.4±0.1 kcal mol-1
Caraiman & Bohme
J. Phys. Chem. A 2002, 106,
9705-17.
+ O2
O
O
+ H2
CHO
CHO
DH = -44.8±1.1 kcal mol-1
DH = -52.4±0.1 kcal mol-1
C O + H2O
DH = -52.6±1.1 kcal mol-1
HO
OH
DH = -84.8±1.1 kcal mol-1
catechol
10
10
6
Sr
+
SrC60
+
5
Intensity
Sr(C60)2
10
4
10
3
10
2
10
1
10
0
+
Sr(C60)3
+
Sr(C60)4
0
500
1000
1500
2000
2500
+
3000
m/z
ICP/SIFT/QQQ mass spectrum
Proposed tetrahedral
structure for Sr(C60)4+
Chemical Resolution
of Atomic Isobars
in ICP/DRC/MS:
a Case Study
A CASE STUDY
The 87Rb+ (s0) / 87Sr+ (s1) Interference
in age determination of magnetic rocks.
L.J. Moens et al,
J. Anal. At. Spectrom. 16 (2001) 991-994
- needed Sr+ isotope ratios in the presence
of a Rb+ interference,
- used CH3F in the dynamic reaction cell, and
- measured intensities of SrF+
M+ + CH3F MF+ + CH3
found to be fast with Sr+(s1) / not with Rb+(s0)
The 87Rb+ (s0) / 87Sr+ (s1) Interference
Rb+ (s0) + CH3F Rb+.CH3F
100% k 1.3x10-12 cm3 s-1
RbF+ + CH3 0%
Sr+ (s1) + CH3F Sr+.CH3F
4% k = 1.4x10-11 cm3 s-1
SrF+ + CH3 96%
The 87Rb+ (s0) / 87Sr+ (s1) Interference (cont’d)
Rb+ (s0) + SF6 NR
Sr+ (s1) + SF6 SrF+ + SF5
SrSF5+ + F
k 1x10-13 cm3 s-1
97%
3%
k = 5.7x10-10 cm3 s-1
ICP/SIFT Results at 295 K, 0.35 Torr He
Rb+(s0)
BR k/cm3s-1
1
1.3x10-12
0
1
5.1x10-13
0
0
<10-13
<5x10-13
<10-12
1
4.0x10-13
M+ + CH3F M+.CH3F
MF+ + CH3
M+ + CH3Cl M+.CH3Cl
MCl+ + CH3
CH2Cl+ + MH
M+ + N2O MO+ + N2
M+ + CO2 M+.CO2
M+ + CS2 M+.CS2
M+ + OCS M+.OCS
MS+ + CO
M+ + SF6 MF+ + SF5
MSF5+ + F
M+ + D2O M+.D2O
1
MOD+ + D
M+ + NH3 M+.NH3
1
<10-13
3.0x10-13
5.5x10-13
Sr+(s1)
BR k/cm3s-1
0.04 1.4x10-11
0.96
0 3.9x10-11
0.99
0.01
1 6.3x10-11
1 6x10-13
1 1.1x10-11
0.50 3.9x10-13
0.50
0.97 5.7x10-10
0.03
0.50 4.0x10-13
0.50
1 4.9x10-13
Discontinuities in reactivity provide an
opportunity for chemical resolution
M+ + SF6
MFn+ + SF6-n
M+(SF6 )
SFn+ + MF6-n
C. Ping and D.K. Bohme, J. Phys.Chem. A, in preparation.
2. The Ultimate
Chemical
Mass Spectrometer
The ESI/qQ/SIFT/QqQ instrument
A – skimmer, B – q0 reaction cell, C extended stubbies, D – extended q0 rod set
_________________________________________________________________________________________
A novel chemical reactor suited for studies of biophysical chemistry: construction and
evaluation of a selected ion flow tube utilizing an electrospray ion source and a triple
quadrupole detection system. G.K. Koyanagi et al. Int. J. Mass Spectrom. 265, 295-301 (2007).
Chemical Reactions
of Atomic Metal Dications
Ozonolysis of Metal Dications
Oxidation of Ca++ is Initiated by Charge Separation.
Ca
++
+
Ca++ + O3 CaO+ + O2+
O2
+
CaO
CaO3
10
-1
Ion Signal/(s )
(k = 1.5 × 10-9 cm3 s-1)
+
3
+
CaO2
CaO+ + O3 CaO2+ + O2
2
(k = 5 × 10-10 cm3 s-1)
10
0
1
2
3
4
17
5
6
-1
O3 flow/(10 molecules s )
100 M CaAcetate in H2O/CH3OH (1/1)
7
CaO2+ + O3 CaO3+ + O2
(k = 6 × 10-10 cm3 s-1)
Ba++ BaO3++ BaO6++ BaO9++ BaO12++
1
Ba
2
3
k01 = 1.1 × 10-11 cm3 s-1
.
k02 = 2.9 × 10-10 cm3 s-1
k13 = 1.2 × 10-10 cm3 s-1
1
k4 = 1.8 × 10-10 cm3 s-1
++
4
++
BaO9
-1
Ion Signal/(s )
10
3
10
++
BaO3
4
++
Ba(H2O)O6
++
BaO12
++
BaO6
Ba++
++
Ba(H2O)O3
H2O
O3
2
10
++
BaH2O
++
Ba(H2O)++
BaO3+
Ba 2(H2O)
+
H2O
O3
0.0
0.4
0.8
18
1.2
1.6
BaO6+
-1
O3 flow/(10 molecules s )
+
O3
BaO9+
10 M BaCl2 in H2O/CH3OH (1/1)
Ba(H2O)O3++
+
O3
BaO12++
H2O
H2O
Ba(H2O)2++
Ba(H2O)O6++
2+
Ca
4
10
+
D3O
-1
Ion Signal/(s )
2+
+
Ca
2+
Ca(D2O)
CaOD
+
CaOD(D2O)
+
Ca(D2O)
2
2+
CaOD(D2O)
+
10
CaOD(D2O)5
+
CaOD(D2O)3 CaOD(D O) +
2
4
10
+
CaOD(D2O)2
+
1
D2O hydrolysis of
CaOD
+
D3O
3
10
+
CaOD(D2O)3
+
CaOD(D2O)2
+
Ca2+
CaOD(D2O)4
+
CaOD(D2O)5
0
10
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
18
-1
D2O flow/(10 molecules s )
7
10
2+
6
Ba
-1
Ion Signal/(s )
10
2+
2+
5
10
2+
Ba(D2O)5
Ba(D2O)6
2+
BaD2O
2+
10
2+
Ba(D2O)2
2+
3
Ba(D2O)4
2+
2+
Ba(D2O)4
2+
Ba(D2O)7
2+
Ba(D2O)3
2+
Ba(D2O)3
10
10
Ba(D2O)5
2+
Ba(D2O)6
1
10
2+
Ba(D2O)7
0
10
0.0
Ba2+
Ba(D2O)2
4
2
Ba
2+
Ba(D2O)
0.5
1.0
18
1.5
-1
D2O flow/(10 molecules s )
in He at 0.35 Torr
and 295 K.
D2O Hydrolysis of Metal Dications
M+
RE/eV
Products
k/ cm3 s-1
Higher-order
Products
-------------------------------------------------------------------------------------------------------------
Mg2+
15.0
Mg+ + D2O+
1.4x10-9
MgOD+, D3O+
Ca2+
11.9
Ca2+D2O
2.3x10-11
Ca2+D2O
CaOD+ + D3O+
7.9x10-10
CaOD+(D2O)1-5
Sr2+
11.0
Sr2+D2O
< 1x10-12
Sr2+(D2O)2-8
Ba2+
10.0
Ba2+D2O
6.7x10-12
Ba2+(D2O)2-7
------------------------------------------------------------------------------------------------------------------------
IE(D2O) = 12.6 eV
Multiply-Charged
Metallated
Biological Ions
DNA is intrinsically very stable (thanks to Mother Nature)!
k295 / cm3 molecule-1 s-1
NH2
N
HO
CH2
N
N
N
O
H
H
H
O
H
H
N
O
O
P
OC H 2
H
NH2
N
O
O
CH3
O
P
<10-13
N2O
<10-13
D2O
<10-13 No hydration
O
H
H
-
O2
No oxidation
H
H
O
<10-13
NH
N
-
O3
HN
OC H 2
O
O
O
N
NH2
H
H
H
H H
N
O
O
P
-
OC H 2
O
C6H6 <10-13 No intercalation
N
O
O
H
H
H
O
CH3
H
O
P
-
HN
H
O
OC H 2
O
O
O
HBr
N
H
H
H
O
H
N
fast
Protonation
Hydrobromination
NH
H
O
O
P
N
OC H 2
O
(AGTCTG-5H)5-
-
O
H
H
H
H
OH
H
N
NH2
DGoacid (HBr) = 1331 kJ mol−1
HBr will protonate H2PO4− in the gas phase
Protonation and Hydrobromination of (AGTCTG-5H)5- by HBr
10
3
7
7
6
n= 1
n=1
n= 1
[(A G T C T G -5 H )(H B r) n ]
[(A G T C T G -3 H )(H B r)n ]
[(A G T C T G -4 H )(H B r) n ]
5
3
4
Io n Signal/(s
1
)
10
4
10
HBr
4–
84%
5
n= 1
[(A G T C T G -2 H )(H B r) n ]
16% [(AGTCTG − 4H)(HBr) ]4−
n
n = 1-6
1
(A G T C T G -5 H )
(A G T C T G -3 H )
(A G T C T G -2 H )
3–
5
0 .4
H B r flo w /(1 0
0 .8
17
80%
[(AGTCTG − 3H)(HBr)n]3−
n = 1-7
4
20%
3
2
1 .2
1 .6
1
m o le c u le s s )
50 M in 20/80 CH3OH/H2O
HBr
2–
0
0 .0
HBr
2
(A G T C T G -4 H )
10
73%
27%
[(AGTCTG − 5H)(HBr)n]5−
n = 1-7
2
10
5–
100%
[(AGTCTG − 2H)(HBr)n]2−
n = 1-5
Rate coefficients (in units of 10-9 cm3 molecules-1 s-1)
for reactions with HBr in He at (0.350.01) Torr and (2922) K.
Anion
kobs
kcap
kobs/kcap %PT
(AGTCTG – 5H)5(AGTCTG – 4H)4(AGTCTG – 3H)3(AGTCTG – 2H)2-
3.2
2.6
1.9
1.3
4.27
3.35
2.47
1.62
0.68
0.78
0.77
0.80
[Ni(AGTCTG – 5H)]3[Ni(AGTCTG – 4H)]2-
>1
>1
73
84
20
0
0
The processes observed with nickellated species with HBr
were similar to those for non-metallated anions:
- trianion underwent protonation and hydrobromination
- dianion underwent only hydrobromination.
We have learned that:
Periodic trends in the reactivities of atomic metal cations
now can be measured routinely in the absence or presence
of ligands.
These trends are governed by thermodynamics, by
intrinsic barriers, by spin, or by electronic structure
effects.
● Atomic cations can catalyze the transport of an O atom
from one molecule to another.
Atomic metal cations can activate benzene and catalyze its
oxidation.
Atomic metal cations can attach to C60 and perhaps
catalyze the reduction of N2O while attached.
The periodic surveys of atomic-cation reactivity provide
useful data for the application of ICP/DRC/MS.
and that:
ESI provides a means to study the reactivities of free
and solvated atomic metal dications.
ESI provides a means to measure the reactivities of
metallated biological anions.
DNA-like anions appear to be intrinsically very stable.
Even the chemistry of metallated DNA-like anions now
can be invetigated in the gas phase.
Acknowledgments
Greg Koyanagi
Stefan Feil
Janna Anichina
Voislav Blagojevic
Michael Jarvis
Andrea Dasic
Tuba Gozet
Sara Hashemi
Mike Duhig
Svitlana Shcherbyna