디지탈제어 강의자료 Chapter6

Download Report

Transcript 디지탈제어 강의자료 Chapter6

Chapter 6
Design Using
State-Space Methods
Robotics Research Laboratory
1
x (t )  Fx(t )  Gu(t )
y (t )  Hx (t )  Ju(t )
x (k  1)  Φx(k )  Γu(k )
y (k )  Hx(k )  Ju(k )
T
where Φ  e , Γ   eF d G
FT
0
x ( k )  R n , u( k )  R r , y ( k )  R m
Robotics Research Laboratory
2
Solution of LTI Discrete-Time State Equation
Assume that x( k0 ) and u( k0 )
u( k  1) are given.
x (k0  1)  Φx(k0 )  Γu( k0 )
x (k0  2)  Φx( k0  1)  Γu( k0  1)
 Φ 2 x (k0 )  ΦΓu(k0 )  Γu(k0  1)
x(k )  Φ
k  k0
x ( k0 ) 
k 1
k  j 1
Φ
Γu( j )

j  k0
The output of the system is as follows.
y (k )  HΦ
k  k0
k 1
x(k0 )  H  Φ k  j 1Γu( j )  Ju( k )
j  k0
Robotics Research Laboratory
3
For x (k  1)  Φx (k )  Γu (k )
zX (z )  zx (0)  ΦX ( z )  ΓU ( z )
(zI  Φ ) X ( z )  zx (0)  ΓU ( z )
X ( z )  (zI  Φ ) 1 zx (0)  ( zI  Φ ) 1 ΓU ( z)
x (k )  z1 (zI  Φ ) 1 z x (0)  z- 1 (zI  Φ ) 1 ΓU ( z)
Since k0  0,
If
Φ k  z1 ( zI  Φ ) 1 z
x (0)  0
X ( z )  (zI  Φ ) 1 ΓU ( z )
Y (z )  H (zI  Φ ) 1 Γ  J  U (z)
transfer function
Robotics Research Laboratory
4
Lyapunov Stability Analysis
Def : Equilibrium State
The state xe which is a constant solution of the state equation with
u (k )  0 for all k  k0 is defined as the equilibrium state of
the system.
x (k  1)  Φx (k )
xe  Φxe or (I  Φ ) xe  0
Def : Stability in the sense of Lyapunov
xe is said to be stable at k0 if for given any real number ε  0,
there exists a δ (ε , k0 )  0 such that for all initial states x (k0 )
in the sphere of radius δ
x (k0 )  xe  δ (ε , k0 ),
Robotics Research Laboratory
5
then the solution of the system remains with a sphere of
radius ε for all k  k0
i .e,
x (k )  x e  ε
 k  k0
x2
ε
xe
δ
x(k0 )
Robotics Research Laboratory
x1
6
Def : uniformly stable , δ(ε )
Def : globally stable
x (k0 )  X (entire state space)
Def : asymptotically stable
if
i) it is stable i.s. L
ii) for any k0 and any x (k0 ) which is sufficientally close to xe ,
x (k ) converges to xe as k approaches infinity
Def : uniformly asymptotically stable
Def : asymptotically stable in the large
Robotics Research Laboratory
7
Def : exponentially stable
if 
r , a, b  0
 : x (k )  xe  a x (k0 )  xe e  bt
 k , k0  0
 x (k0 )  Br
Remarks :
i) The LTI discrete-time system is asymptotically stable iff
the eigenvalues of Φ i .e, λ i , i  1, 2,
λ i < 1 , i  1, 2,
n satisfy
n
ii) The roots of zI  Φ  0 must all lie inside the unit circle
z  1.
Robotics Research Laboratory
8
Def : BIBO ( Bounded Input Bounded Output) Stability
The system is BIBO stable if any bounded input gives
a bounded output
k 1
x (k )  ψ (k ) x (k0 )   ψ (k  i  1)Γu ( j )
i  k0
k 1
x (k )  ψ (k ) x (k0 )   ψ (k  i  1) Γ u ( j )
i  k0
Since u ( j ) is bounded and x (k0 ) is a constant vector,
x (k ) will bounded if ψ (k ) < p   for all k
k 1
and
 ψ (k  i  1)Γ
θ
k
i  k0
asymptotically
BIBO stable
stable
Robotics Research Laboratory
9
Def : Positive definite
A scalar function V ( x ) is said to be positive definite in a region Ω
if V ( x )  0 for all nonzero state x in the region Ω
and if V ( x )  0, x  0.
ex )
x12  x22 (p.d)
(x1  x2 )2 (p.s.d)
2
x
2
x12 
(p.d)
2
1  x2
 x12  ( x1  x2 )2 (n.d)
x1 x2  x22 (indefinite)
Similarly , for a time-varying system
V ( x , k )  W ( x ) for all k  k0
V (0, k )  0
for all k  k0
Robotics Research Laboratory
10
Def : Lyapunov function
Any function V ( x (k )) is called a Lyapunov function
for the system x (k  1)  f ( x (k )), f (0)  0
If
i) V ( x ) is continuous in x
ii) V ( x (k ))   as
x (k )
  and V (0)  0
iii) V ( x (k )) is p.d. for x  0
iv) V ( x (k )) V ( x (k  1))  V ( x (k )) is n.d. for x  0
ex) In 2 –dim
stable i.s. L
asymptotically stable
x1
x2
Robotics Research Laboratory
11
Thm : Lyapunov Second Theorem ( Lyapunov Direct Theorem)
Consider that a discrete - time system is descrived by
x (k  1)  f ( x (k )) where x (k )  R n
f ( x (k )  0) =0  k
Suppose that there exists a scalar function V ( x (k )) which is
continuous on x (k ) such that
i) V ( x (k ))  0 for x  0
ii)  V ( x (k )) 0 for x  0
iii) V ( x (k ))  
as x
 
iv) V ( x (k )  0)  V (0)  0
Then the equilibrium state x (k )  0,  k is asymptotically
stable in the large
Robotics Research Laboratory
12
ex )
x1 (k  1)  0.5 x1(k )
x2 (k  1)  0.5 x2 (k )
Assign the Lyapunov function candidate
V ( x (k ))  x12 (k )  x22 (k ) > 0 , x (k )  0
 V ( x (k ))  V ( x (k  1))  V ( x (k ))
 x12 (k  1)  x22 (k  1)  x12 (k )  x22 (k )
 0.75  x12 (k )  x22 (k ) 
V ( x (k ))  0 for x  0
 The system is asymptotically stable
Remarks :
i) eigenvalues =  0.5,  0.5
0 
 0.5
ii) x (k  1)  
x (k )

0.5 
 0
Robotics Research Laboratory
13
V ( x (k ))  xT Px  0
P >0
 V ( x (k ))  x (k  1)T Px (k  1)  x (k )T Px (k )
 (Φx (k ))T P (Φx (k ))  x (k )T Px (k )
 x (k )T [ΦT PΦ  P ]x (k )
 ΦT P Φ  P  Q
Given Q > 0,
where Q > 0
 a P 
ΦT P Φ  P  Q
iii) It is a sufficient cond. However , in the case of linear
system, it is a sufficient and necessary condition.
iv) In an LTI continuous-time system, the Lyapunov equation is
described as follows.
AP  PAT  Q
Robotics Research Laboratory
14
0 
 0.5
x (k  1)  
x (k )

0.5 
 0
1 0
Q  
 0
good choice

 0 1
ex )
 p11
P
 p21
Let
using
p12 
p22 
ΦT P Φ  P  Q ,
0 
1.33
P 
>0

1.33 
 0
by Lyapunov second theorem, the system is asymptotically stable
Note: Alexander Mikhailovitch Lyapunov (1857 – 1918)
Robotics Research Laboratory
15
Controllability ( Reachability )
Def : The system is controllable (reachable) if it is possible to find
a control sequence such that the origin (an arbitrary state)
can be reached from any initial state in finite time.
Remark: finite time / unbounded input
controllable
x (k0 )  0
reachable
x (k0 )  xd (not necessary equal to 0)
Robotics Research Laboratory
16
Remarks :
i) If Φ k x (0)  0, it is controllable, but not necessarily to be reachable.
ii) If Φ is invertible , the controllability and the reachability are equivalent.
n 1
x(n )  Φ x(0) + Φ n  j 1Γu( j )
n
j 1
 Φ n x(0) +Φ n 1Γu(0)  Φ n 2 Γu(1) 
x(n )  Φ n x(0)  [Γ : ΦΓ :
 Γu( n  1)
 u(n  1) 
u(n  2)

: Φ n 1Γ ] 




u
(0)


Robotics Research Laboratory
17
Define
Wc  [Γ : ΦΓ :
: Φ n 1Γ ]
U  [uT (n  1) :
: uT (0)]
x (n )  Φ n x (0)  Wc U ( i.e, y  Ax )
U  Wc 1[ x (n )  Φ n x (0)]
Wc is called the controllability matrix
Remarks :
i) If Wc has rank n, then it is possible to find n equations
from which the control signals can be found such that
the initial state is transferred to the desired final state x (n )
ii) If rank Wc < n , it is not possible to have x (k )  xf
for all k for some xf
Robotics Research Laboratory
18
Theorem : The system is reachable iff the matrix Wc has rank n.
1
 1
 1 
x (k  1)  
x
(
k
)

u( k )



 0.25 0 
 0.5 
2
x (0)   
2
Determine u(0) and u(1) such that xT (2)   0.5 1
ex )
x (2)  Φ 2 x (0)  ΦΓu(0)  Γu(1)
 0.5  3.5   1 
 1    1    0.5  0.5u(0)  u(1)

 
 

0.5u (0)  u (1)  4

u (0)  2, u(1)  3
Robotics Research Laboratory
19
Is it controllable ?
Determine u (0) and u (1) such that xT (2)  0.5 1
 no solution exists

0.5 
 1
Wc  
, rank Wc  2

 0.5 0.25 
Remarks :
i) Any initial state x (0) can be transferred to the desired
state in n sampling periods for a sequence of unbounded
control signal as long as Wc is of rank n.
ii) A necessary and sufficient condition for complete controllability
is that no cancellation occurs in the transfer function.
 minimal realization
Robotics Research Laboratory
20
ex )
Y (z)
(z  0.2)

U ( z ) ( z  0.8)( z  0.2)
1
 0
 1 
x(k  1)  
x(k )  
u( k )


 0.16 1
 0.8 
y (k )  1 0  x( k )
0.8 
 1
Wc  

 0.8 0.64 
rank Wc  2
Robotics Research Laboratory
21
ex )
 0 ω
0
x (t )  
x
(
t
)

u (t )



 ω 0 
ω 
y (t )  1 0 x (t )
det Wc  ω 3
ω2
 h(s )  2
s  ω2
controllable
Using ZOH
 cos ωT sin ωT 
1  cos ωT 
x
(
k
)

  sin ωT cos ωT 
 sin ωT  u(k )




y (k )  1 0  x(k )
x (k  1) 
det Wc  2sin ωT (1  cos ωT )
if ωT  nπ
(2n  1)
if ωT 
π
2
uncontrollable
controllable
Robotics Research Laboratory
22
Output Controllability

Any y (0)
arbitrary y (k )  R m
sequence of unbounded control input
finite time
k 1
x (k )  Φ x (0)   Φ k  j 1Γu ( j )
k
j 0
n 1
y (n )  CΦ x (0)   Φ n  j 1Γu ( j )
n
j 0
n 1
y (n )  CΦ x (0)   Φ n  j 1Γu ( j )
n
j 0
 CΦ n 1Γu (0)  CΦ n 2 Γu (1) 
Robotics Research Laboratory
 CΓu (n  1)
23
 u (n  1) 
u (n  2) 

: CΦ n 1Γ ] 




u
(
0
)


 [CΓ : CΦΓ :
vectors CΓ : CΦΓ :
: CΦ n 1Γ must span the
m-dimensional output space
rank [ CΓ : CΦΓ :
: CΦ n 1Γ ] = m
Robotics Research Laboratory
24
Remarks :
i) Complete state controllability implies complete
output controllability iff the m rows of C are
linearly independent
ii) If y (k )  Cx (k )  Du (k )
rank [D : CΓ : CΦΓ : : CΦ n 1Γ ]  m
The presence of the matrix D always helps to establish
complete output controllability
Robotics Research Laboratory
25
Regulation via Pole Placement
x (k  1)  Φx (k )  Γu (k )
Assume that the magnitude of the control input u (k ) is unbounded
u (k )  Kx (k )
x (k  1)  (Φ  ΓK ) x (k )
The eigenvalues of (Φ  ΓK ) are the desired closed-loop poles
arbitrary pole
placement
Nec. & Suff.
completely
state
controllable
Robotics Research Laboratory
26
Let us define a transformation matrix Q ( P  Q 1 )
from x to z such that z( k )  Qx( k )
P  Wc M 1 or Q  MWc1
 an 1
a
 n 2
where M -1   .

 a1
 1
Wc 
Γ
an 2
.. a1
an 3
.
..
..
1
.
1
..
0
0
..
0
ΦΓ
1
0 
.

0
0 
. . Φ n 1Γ 
Robotics Research Laboratory
27
Φ
 0
 0

z(k  1)  

 0
 an
1
0
0
1
0
0
Γ
0 
0 
0 
0 
 
 z (k )    u (k )

 
1 
0 
 1
a1 
an 1 an 2
Controllable canonical form
Φ ~Φ
i.e., Φ  Q 1Φ Q,
z n  a1z n 1 
 an  0
Γ  Q 1 Γ
open - loop characteristic polynomial
Robotics Research Laboratory
28
The desired closed-loop system poles are μ1 , μ2 ,...., μn .
φ (z)
(z  μ1 )(z  μ2 )
 z n  α1z n 1 
( z  μn )
 αn
closed-loop characteristic polynomial
Let u (k )  Kz (k )
φ (z )  z n  (a1  k n )z n 1 
 (an  k1 )
Since u (k )  Kz (k )  KQx (k )  Kx (k )
K  [α n  an , α n 1  an 1 ,
K  KQ  [1 0
 [1 0
 [1 0
, α 2  a2 , α1  a1 ]
0]φ (Φ )Q
0]φ (QΦQ 1 )Q
0]Qφ (Φ )
Robotics Research Laboratory
29
0]MWc1φ (Φ )
K  [1 0
1]Wc1φ (Φ )
 [0 0
Ackermann's formula
Remarks:
n
i) φ (Φ )  Φ  α1Φ
n 1
 (α1  a1 )Φ

n 1
 αn I

 (α n  an )I
k
The first row of Φ is zero except a position k  1 which is 1
ii)
0 0
1 0 0 0 1
 1 a1
1 
a1   0 0 1
a2  a12 
M
Robotics Research Laboratory
30
Remarks:
i) Nonuniqueness of state-space representation
Different state-space representation for a given transfer function
are possible. However, the state equations are related to each other
by the similarity transformation (matrix).
ii) Canonical forms for discrete-time state-space equations
a) controllable canonical form  direct programming method
b) observable canonical form
c) diagonal canonical form
d) Jordan canonical form
 nested programming method
 partial-fraction expansion method
 partial-fraction expansion method
Robotics Research Laboratory
31
ex )
1
 0
0 
x (k  1)  
x (k )    u (k )

 0.16 1
 1
open - loop
z 2  z  0.16  0
desired poles z1  0.5  j 0.5, z2  0.5  j 0.5
φ (z )  z 2  z  0.5
0 1 
Wc  [Γ : ΦΓ ]  
full rank

 1 1
K  0 1Wc1φ (Φ )
1
0 1  0.34 2 
 0 1 
 

 1 1 0.32 2.34 
 0.34 2
  k1 k 2 
Robotics Research Laboratory
32
1
 0
0 
x (k  1)  
x
(
k
)

u (k )



 0.16 1
 1
ex )
1
0 1  0.34 2 
K  0 1 
 0.34 2   k1



 1 1 0.32 2.34 
k2 
In case of x (0)  5 10  ,
20
20
15
15
15
10
10
10
5
5
5
0
-5
Input u
20
State variable x2
State variable x1
T
0
0
-5
-5
-10
-10
-10
-15
-15
-15
-20
0
2
4
6
8
10
x1 (k )
12
14
16
18
-20
0
2
4
6
8
10
12
14
16
18
x2 (k )
Robotics Research Laboratory
-20
0
2
4
6
8
10
12
14
16
18
u (k )
33
Deadbeat Control
(Minimum Settling Time Control)
The deadbeat response is unique to discrete-time system.
φ(z)  z n
 Φcn  0 (by Cayley - Hamilton theorem)
i. e. , It will drive all the states to zero in at most n steps.
i. e. , nT is the settling time (only design parameter).
ex )
1
 0
0 
x (k  1)  
x (k )    u (k )

 0.16 1
 1
z 2  (1 k2 )z  0.16  k1  z 2
k1  0.16
k2  1
Robotics Research Laboratory
34
 0 1
x (k  1)  Φc x (k )  
 x (k )
0
0


 x1 (0)  a 
For
 x (0)   b 
 2   
 x1 (1)  0 1 a   b 
 x (1)   0 0  b    0 
   
 2  
 x1 (2)  0 1  b  0 
 x (2)   0 0  0   0 
   
 2  
Robotics Research Laboratory
35
1
 0
0 
x (k  1)  
x
(
k
)

u (k )



 0.16 1
 1
z 2  (1 k2 )z  0.16  k1  z 2
ex )
k1  0.16
k2  1
In case of x (0)  5 10  ,
20
20
15
15
15
10
10
10
5
5
5
0
Input u
20
State variable x2
State variable x1
T
0
0
-5
-5
-10
-10
-10
-15
-15
-15
-5
-20
-20
0
2
4
6
8
10
x1 (k )
12
14
16
18
0
2
4
6
8
10
12
14
16
18
x2 (k )
Robotics Research Laboratory
-20
0
2
4
6
8
10
12
14
16
u (k )
36
18
ex)
Astrom's Computer-Controlled Systems (pp. 127 ~ )
T 2 / 2
1 T 
x (k  1)  
 u (k )
 x (k )  
0
1


 T 
u (k )  k1x1 (k )  k2 x2 (k )
1 k1T 2 / 2 T  k 2T 2 / 2 
x (k  1)  
 x (k )
1 k 2T 
 k1T
The characteristic equation of the closed-loop system
k1T 2
k1T 2
z (
 k 2T  2)z  (
 k 2T  1)  0
2
2
2
Robotics Research Laboratory
37
The desired characteristic equation
z 2  p1z  p2  0
k1 
1
(1 p1  p2 ),
2
T
k2 
1
(3  p1  p2 )
2T
Other approach:
T 2 / 2 3T 2 / 2
Wc  Γ ΦΓ   

T
T


1
c
W
 1/ T 2

2
1
/
T

1.5 / T 

0.5 / T 
Robotics Research Laboratory
38
1  p1  p2 2T  p1T 
φ(Φ )  Φ  p1Φ  p2I  

p

p

1
0
2
1

2
K   k1
3  p1  p2 

2T

1  p1  p2
k 2   0 1W φ(Φ )  
T2

1
c
Assume that the desired characteristic polynomial
is s 2  2ζωn s  ωn 2 .
s1,2  ζωn  jωn 1  ζ 2
Then

z  esT
s1,2
 e ζωnT   ωnT 1  ζ 2
p1  2e ζωnT cos(ωnT 1  ζ 2 )
p2  e 2ζωnT
Robotics Research Laboratory
39
To discuss the magnitude of the control signal, it is assumed
that the system has an initial position x0 and an initial velocity v 0 .
u( k )  k1 x1( k )  k 2 x2 ( k )
u(0)  k1 x0  k 2v 0
where k  0
If the sampling period is short, then the expressions for p1 and p2
can be approxiamated using series expansion.
u(0)  ωn 2 x0  2ζωn v 0
Remark:
The m agnitide of the control signal increases with increasing ωn .
An increase in the speed of the response of the system will require
an increase in the control signals.
Robotics Research Laboratory
40
Remarks: Damping ratio and natural frequency
for given the complex pole location in the z-plane
z  esT
Magnitude
Phase
s1,2
 e  ζωnT   ωnT 1  ζ 2  r   θ

2πζ ωd 
r
e
 exp  
2 ω 

1 ζ
s 

ω
ωnT 1  ζ 2  ωd T  2π d  θ
ωs
 ζωnT
or ζωnT   ln r
Taking the ratio of the last two equations and solving this equatuion for ζ yields
ζ 
 ln r
ln2 r  θ 2
from
ζ
1-ζ 2

 ln r
θ
Then ωn becomes
ωn 
1
ln2 r  θ 2
T
Robotics Research Laboratory
41
Remarks: Choice of appropriate sampling rate
i) open-loop system
ii) closed-loop system
Tr
 4 ~ 10
T
1.8 1.8 1.8 ωs ωs
ωn 



Tr
10T 10 2π 35
Nr 
2π
ωs
2π
T
N


ωd ω 1  ζ 2 ω T 1  ζ 2
n
n
N  25 to 75 (reasonable)
i.e., the number of samples per period of dominating mode
of the closed-loop system
iii)
ωnT  0.1 to 0.6 for ζ  0.7 where ωn is the desired natural
frequency of the closed-loop system.
Robotics Research Laboratory
42
Robotics Research Laboratory
43
Robotics Research Laboratory
44
Robotics Research Laboratory
45
Robotics Research Laboratory
46
Robotics Research Laboratory
47
Robotics Research Laboratory
48
State Feedback Design
by Emulation (Redesign)
Consider x (t )  Ax (t )  Bu (t )
y (t )  Cx (t )
u (t )  Kx (t )  Mr (t )
x (k  1)  Φc x (k )  Γc Mr (k )
where Φc  e AcT  e ( ABK )T     (1)
T
Γc   e
0
Ac s '
ds ' B
Robotics Research Laboratory
49
If the digital control is used,
x (k  1)  Φx (k )  Γu (k )
where
Φ  e AT
Γ 

T
0
e
As '
ds ' B
u (k )  Kx (k )  Mr (k )
x (k  1)  (Φ  ΓK ) x (k )  ΓMr (k )
Φc  Φ  ΓK
    (2)
Robotics Research Laboratory
50
Assume K  K 0 
T
K1
2
From (1)
T2
Φc  I  ( A  BK )T  [ A  BKA  ABK  (BK ) ]
2
2
2
(3)
T2
Φ  I  AT  A
2
2
T
ΓK   e ds ' B (K 0  K1
As '
0
T
A
T
)  (T  T 2 )B(K 0  K1 )
2
2
2
From (2)
T2 
T2
T2
T3 
Φ  ΓK  I  AT  A
  BK 0T  BK1
 ABK 0
 ABK1

2 
2
2
4 
2
Robotics Research Laboratory
51
T2
Φ  ΓK  I  ( A  BK 0 )T  [ A  ABK 0  BK1 ]
2
2
(4)
Comparing (3) with (4)
A  BK  A  BK 0
A2  BKA  ABK  BKBK  A 2  ABK 0  BK1
Robotics Research Laboratory
52
Since K 0  K ,
BK1  BKA  BKBK  B (KA  KBK )
K1  K ( A  BK )
T

K  K I  ( A  BK ) 
2

T

Similarly, M   I  KB  M
2

Robotics Research Laboratory
53
 0 1
0 
ex ) x (t )  
x (t )    u (t )

0 0 
 1
y (t )  1 0  x (t )
u (t )  Kx (t )  Mr (t )   1 1 x (t )  r (t )
u (k )   1 1 x (k )  r (k ),
T  0.5

u (k )  Kx (k )  Mr (k )
  1 0.5T
 x (kT ) 
1  1
 (1 0.5T )r (kT )

 x2 (kT ) 
Robotics Research Laboratory

54
1.4
1.4
1.2
1.2
position
position
ys
1
0.8
yc
0.6
0.4
0.2
0
0
1
2
3
4
5
6
7
8
9
0.6
0.4
0
10
ys
0
1
2
3
4
5
6
7
8
9
10
0
1
2
3
4
5
6
7
8
9
10
0
1
2
3
4
5
6
7
8
9
10
0.6
0.6
0.5
0.5
velocity
velocity
yc
0.8
0.2
0.7
0.4
yc
0.3
0.2
0.1
0
0.4
0.3
0.2
0.1
0
-0.1
-0.2
ys
1
0
1
2
3
4
5
6
7
8
9
-0.1
10
1
1
0.8
Input
Input
0.6
0.5
0
0.4
0.2
0
-0.2
-0.5
0
1
2
3
4
5
6
7
8
9
10
Fig 1. Control of the double integrator using
the control law in (*) when T=0.5
-0.4
Fig 2. Control of the double integrator using
the modified control law in (**) when T=0.5
Robotics Research Laboratory
55
Observability
known
Def. The system
x (k  1)  Φx (k )  Γu (k )
y (k )  Hx (k )
is said to be observable if for any k0 , any state x (k0 )
can be determined from the knowledge of the inputs
u (k0 ),
.u (k  1) and the outputs y (k0 ).
.y (k  1)
for finite time
Let k0  0
y (0)  Hx (0)
y (1)  Hx (1)  H (Φx (0)  Γu (0))
y (n  1)  Hx (n  1)  H[Φ n 1 x (0)  Φ n 2 Γu (0) 
Robotics Research Laboratory
 Γu (n  2)]
56
given
known
y (0)
 H 


 HΦ 


y
(
1
)

HΓu
(
0
)

 x (0)  








n 1 
n 2
HΦ
y
(
n

1
)

H
[
Φ
Γu
(
0
)


Γu
(
n

2
)]




Define
W0  H T : ΦT H T :
: (Φ n 1 )T H T 
Theorem : The system is observable iff W0 has rank n.
Robotics Research Laboratory
57
State Observer (Estimator)
x (k  1)  Φx (k )  Γu(k )
()
y (k )
u (k )
x (k )
state observer
open-loop vs. closed-loop
full-order vs. reduced-order
prediction
vs. current
x (k  1)  Φx (k )  Γu (k )
e(k  1)
(  )
x (k  1)  x (k  1)
 Φe(k )
Note : i) Φ should be stable.
ii) e(0) should be known.
Robotics Research Laboratory
58
Prediction Estimator
x (k  1)  Φx (k )  Γu (k ) +Lp [ y (k )  Hx (k )]
e (k )
(  )
correcting term
or innovation term
x (k )  x (k )
e(k  1)  Φe(k )  Lp He(k )  [Φ  Lp H ]e(k )
zI  Φ  Lp H  0
The desired poles are β1 , β2 ,...., βn
(z  β1 )(z  β2 )
(z  βn )  0
Characteristic polynomial of the closed-loop system
φ (z )  z n  α1z n 1 
 αn
Robotics Research Laboratory
59
Remarks :
i) Output information is used.
ii) Φ is not necessarily stable.
iii) All eigenvalues of Φ  LP H are chosen to be zero.
It shows deadbea t response.
iv) Ackermann's formula
0 
 
Lp  φ (Φ )W01  
0 
 
 1
where W0 = H T : ΦT H T :
: (Φ n 1 )T H T 
φ(Φ )=Φ n  α1Φ n 1 
Note:
K  [0 0
 α n 1Φ  α n I
1]Wc1φ (Φ )
where Wc  Γ : ΦΓ :
: Φ n 1Γ 
Robotics Research Laboratory
60
Current Estimator
x (k )  z (k )  Lc [ y (k )  Hz(k )]
z(k )  Φx (k  1)  Γu (k  1)
e (k )
x (k )  x (k )
e(k  1)  Φx (k )  Γu (k )  {Φx (k )  Γu (k )
 Lc [H [Φx (k )  Γu (k )]  H[Φx (k )  Γu (k )]]}
 (Φ  Lc HΦ )e(k )
 HΦ 
HΦ 2 

Lc  φ (Φ ) 



n
HΦ


1
0 
0 
 
 
 
 1
where φ(Φ )  Φ n  α1Φ n 1 
 α n 1Φ  α n I
Robotics Research Laboratory
61
Reduced-Order Estimator
(Minimum-Order Estimator)
x (k  1)  Φx (k )  Γu (k )
co
 xa ( k ) 
 [I 0] 
y (k )
 i .e y (k )  xa (k )
)
k
(
x
 b 
 xa (k  1)  Φaa Φab   xa (k )  Γa 
  x (k )    Γ  u (k )
 x (k  1)   Φ
Φ
bb   b
  b
  ba
 b
xa (k  1)  Φaa xa (k )  Φab xb (k )  Γa u(k )
xa (k  1)  Φaa xa (k )  Γa u(k )  Φab xb (k )
~ y (k )  Hx (k )
xb (k  1)  Φbb xb (k )  Φba xa (k )  Γb u (k )
()
~ x (k  1)  Φx (k )  Γu(k )
Robotics Research Laboratory
62
xb (k  1)  Φbb xb (k )  Φba xa (k )  Γb u(k )
 Lr [ xa (k  1)  Φaa xa (k )  Γa u(k )  Φab xb (k )]
()
very inconvenient because of
same time instant
eb (k  1)  [Φbb  Lr Φab ]eb (k ) where eb (k )
xb (k )  xb (k )
If xa (k ) is scalar,
 Φab 
Φ Φ 
Lr  φ(Φbb )  ab bb 



n 2 
Φ
Φ
 ab bb 
1
0 
0 
 
 
 
 1
n 1
n 2
where φ
(Φbb )  Φbb
 α1Φbb

α n 1I
Robotics Research Laboratory
63
η (k )
xb (k )  Lr y (k )  xb (k )  Lr xa (k )
η (k )
xb (k )  Lr y (k )
η (k  1)  xb (k  1)  Lr y (k  1)
 (Φbb  Lr Φab ) xb (k )  (Φba  Lr Φaa ) y (k )  (Γb  Lr Γa )u (k )
 (Φbb  Lr Φab )( xb (k )  Lr y (k ))  (Φbb  Lr Φab )Lr y (k )
 (Φba  Lr Φaa ) y (k )  (Γb  Lr Γa )u (k )
 (Φbb  Lr Φab )η (k )  (Φbb  Lr Φab )Lr y (k )
 (Φba  Lr Φaa ) y (k )  (Γb  Lr Γa )u (k )
xb (k )  η (k )  Lr y (k )
xa (k )  y (k )
Robotics Research Laboratory
64
u (k )
Γ
+

x (k )
1
Z I
y (k )  xa (k )
H
+
Φ
Γb  Lr Γa
 0 
 η (k ) 


η (k )
0
In  m
+


+
 xa (k ) 


 Lr xa (k ) 
+
Z 1I
η (k  1) +

Φba  Lr Φaa
Φbb  Lr Φab
+
Lr
Im
Lr
Robotics Research Laboratory
65
ex)
 1 0.2
0.02 
Φ
,
Γ

, H  1 0



0 1 
 0.2 
y (k )  x1 (k )
co / cc
if z1 , z2  0.6  j 0.4 (state feedback )  K  [8, 3.2]
 y (k ) 
u ( k )    8 3 .2  

x
(
k
)
 2 
if φ (z)  z  0 (deadbeat estimator )
η (k  1)  5 y (k )  0.1u (k )
u (k )  8 y (k )  3.2 x2 (k )
 8 y (k )  3.2(η (k )  5 y (k ))
Robotics Research Laboratory
66
u (k  1)  8 y (k  1)  3.2( (k  1)  5 y (k  1))
 8 y (k  1)  16 y (k  1)  3.2(5 y (k )  0.1u (k ))
u (k  1)  0.32u (k )  24 y (k  1)  16 y (k )
u (k )  0.32u (k  1)  24y (k )  16y (k  1)
Y (z )
1 0.667z 1
GD (z) 
 24
U (z )
1 0.32z 1
Robotics Research Laboratory
67
Observed-State Feedback Control
With Estimator
Robotics Research Laboratory
68
State Feedback
u (k )  Kx (k )
x (k  1)  Φx (k )  Γu (k )
 Φx (k )  ΓKx (k ) ; e(k )  x (k )  x (k )
 Φx (k )  ΓKx (k )  ΓLe(k )
x (k  1)  (Φ  ΓK ) x (k )  ΓKe(k )
State Observer
x (k  1)  Φx (k )  Γu (k )  L[Hx (k )  Hx (k )]
e(k  1)  (Φ  LH )e(k )
0   e (k ) 
 e(k  1)  Φ  LH
 x (k  1)    ΓK
Φ  ΓK   x (k ) 

 
zI  Φ  LH zI  Φ  ΓK  c (z)o (z)  0
Separation principle
Robotics Research Laboratory
69
Compensator (Estimator and Control Mechanism)
For the prediction estimator
x (k )  [Φ  ΓK  Lp H ]x (k  1)  Lp y (k  1)
u (k )  Kx (k )
U (z)
 Dp (z)  K [zI  Φ  ΓK  Lp H ]1 Lp
Y (z)
For the current estimator
x (k )  [Φ  ΓK  Lc HΦ  Lc HΓK ]x (k  1)  Lc y (k )
u (k )  Kx (k )
U (z)
 Dc (z)  K [zI  Φ  ΓK  Lc HΦ  Lc HΓK ]1Lc z
Y (z)
Remarks:
i) As a rule of thumb, an observer response must be at least
4 to 5 times faster than the system response.
ii) Using the output feedback only, we can not place poles
at arbitrary locations.
Robotics Research Laboratory
70
Satellite Attitude Control (Franklin’s )
1
G (s )  2
s

 x1  0 1  x1  0 
 x   0 0   x    1 u , y  1 0  x
 2  
 2 
The discrete model for this system is
T 2 
1 T 
Φ
, Γ   2  , H  1 0

 
0 1 
 T 
y (k )  x1 (k )
co / cc
if z1 , z2  0.8  j 0.25 (state feedback )  K  [10, 3.5]
 x (k ) 
u (k )   10 3.5   1 
 x 2 (k ) 
Robotics Research Laboratory
71
if φ (z )  (z  0.4  j 0.4)(z  0.4  j 0.4)
where the desired poles of the estimator are assigned so that
s -plane poles have ζ  0.6 and ωn is about three times faster
than the selected poles.
Lp  1.2 5.2 ,
T
Lc  0.68 5.2
T
if φ (z )  z  0.5
Lr  5
where x2 (k ) is the velocity to be estmated.
Robotics Research Laboratory
72
Time histories with prediction estimator
2
1.5
1
OUTPUTS
0.5
0
-0.5
-1
------o---x---*--
-1.5
U/4
X1
X2
X2 TILDE
-2
0
0.5
1
1.5
Time (sec)
Dp (z)  30.4
2
2.5
3
z  0.825
z  0.2  j 0.557
Robotics Research Laboratory
73
Time histories with current estimator
2
1.5
1
OUTPUTS
0.5
0
-0.5
-1
------o---x---*--
-1.5
-2
0
0.5
1
Dc (z)  25.1
1.5
Time (sec)
2
U/4
X1
X2
X2 TILDE
2.5
3
z(z  0.792)
z  0.265  j 0.394
Robotics Research Laboratory
74
Time histories with reduced-order estimator
2
1.5
1
OUTPUTS
0.5
0
-0.5
-1
------o---x---*--
-1.5
-2
0
0.5
1
1.5
Time (sec)
Dr (z)  27.7
2
U/4
X1
X2
X2 TILDE
2.5
3
z  0.8182
z  0.2375
Robotics Research Laboratory
75
Reference Inputs for Full-State Feedback
r (k )
xr (k )
Nx
+

K
u (k )
plant
x (k )
H
y (k )
-
Objective :
To make all the states and the outputs of the system follow
the desired trajectory.
x (k  1)  Φx (k )  Γu (k )
y (k )  Hx (k )
u (k )  K [ x (k )  xr (k )]
x r (k )  N x r (k )
Robotics Research Laboratory
76
Goal : x()  xss  xr
For a step reference input,
if the system is Type 0  steady-state error
if Type 1 or higher  no steady-state error
For complex systems, the designer has no sufficient knowledge
of the plant. In these cases, it is useful to solve for the equilibrium
condition that satisfies
y ()  yss  r
We need a steady-state control term in order for the solution
to be valid for all system types.
uss  Nu r
Robotics Research Laboratory
77
Nu
feedforward
r (k )
xr (k )
Nx
+

K
+

+
u (k )
plant
x (k )
H
y (k )
-
feedback
u (k )  K ( x (k )  xr (k ))  Nu r (k )
Nx r  xr  xss , Hxss  y ss  r
HNx r  r  HNx  I
()
x (k  1)  Φx (k )  Γu (k )
xss  Φxss  Γuss
 (Φ  I ) xss  Γuss  0
 (Φ  I )Nx r  ΓNu r  0
 (Φ  I )Nx  ΓNu  0
()
Robotics Research Laboratory
78
Φ  I Γ  Nx  0
 


 H

0  Nu   I 

1
Nx  Φ  I Γ  0
N    H
0   I 
 u 
Remark:
r (k )
N
+
u (k )

plant
x (k )
H
y (k )
-
K
N  Nu  KN x
u   K ( x  x r )  Nu r
 Kx  (KN x  Nu )r
 Kx  Nr
Robotics Research Laboratory
79
Reference Inputs with Estimator
Nu
r (k )
xr (k )
Nx
+

K
+

+
u (k )
plant
y (k )
-
estimator
u  K ( x  xr )  Nu r
 Kx  Kx x  Nu r
 Kx  (KNx  Nu )r
 Kx  Nr
Robotics Research Laboratory
80
Output Error Command
ex) thermostats (output error command)
w (k )
r (k ) -

e (k )
x (k )
estimator
K
u (k )
plant
y (k )
+
Estimator
x (k  1)  Φ  ΓK  LpH  x (k )  Lp [ y (k )  r (k )]
 (Φ  ΓK  LpH ) x (k )  LpHx (k )  Lp r (k )
Plant
x (k  1)  Φx (k )  Γu (k )  Γ1w (k )
 Φx (k )  ΓKx (k )  Γ1w (k )
Remark (Fig. 8.17 vs. Figs. 8.19-20 in Franklin’s)
• state space approach > transfer function (I/O) approach
• state command > output-error command
Robotics Research Laboratory
81
Step response time histories for reference input - State command structure
5
4
3
OUTPUTS
2
1
0
-1
-2
-------o----x----*---
-3
-4
-5
0
0.5
1
1.5
Time (sec)
2
Robotics Research Laboratory
U/5
X1
X2
X2 TILDE
2.5
3
82
Output time histories for prediction estimator with output command
5
4
3
OUTPUTS
2
1
0
-1
-2
-------o----x----*---
-3
-4
-5
0
0.5
1
1.5
Time (sec)
2
Robotics Research Laboratory
U/5
X1
X2
X2 TILDE
2.5
3
83
Output time histories for reduced-order estimator with output command
5
4
3
OUTPUTS
2
1
0
-1
-2
------ U/10
--o--- X1
--x--- X2
-3
-4
-5
0
0.5
1
1.5
Time (sec)
2
Robotics Research Laboratory
2.5
3
84
Disk head reader response
2.5
------------ state command structure
ooooooooo output error command
2
.............. classical design
output
1.5
1
0.5
0
0
5
10
15
20
25
30
Time (msec)
35
Robotics Research Laboratory
40
45
50
85
Integral Control by State Augmentation
x (k  1)  Φx (k )  Γu(k )  Γ1w (k )
y (k )  Hx (k )
Integral action is useful in eliminating the steady-state error
due to constant disturbance or reference input commands.
-
+
 e (k )
1
z 1
w (k )
xI ( k )
r (k )
KI
xr (k )
Nx
+

K
+

+
u (k )
+

plant
x (k )
y (k )
H
-
Robotics Research Laboratory
86
xI (k  1)  xI (k )  e(k )  xI (k )  Hx (k )  r (k )
(i .e X I (z) 
1
E (z) )
z 1
 x (k  1)  Φ 0   x (k )  0 
Γ 
Γ1 
 x (k  1)   H 1  x (k )    1 r (k )  0  u (k )   0  w (k )
 I   
 
 
 I
 
 x (k ) 
u (k )    K K I  
 KN x r
state

augmentation
 xI ( k ) 
Robotics Research Laboratory
87
• The design of [K KI] requires the augmented system matrices.
• For the full-state feedback, an estimator is used to provide x .
• The addition of the extra pole for the integrator state leads to a
deteriorated command input response.
• Elimination of the excitation of the extra root by command inputs
can be done by using the zero. Refer p. 327(b)
• The system has a zero at z  1 
KI
.
KN x
So the selection of the zero
location corresponds to a particular selection of Nx.
Robotics Research Laboratory
88
Response with no integral control
A unit reference input at t = 0
A step disturbance at t = 2
3
2
OUTPUTS
1
0
-1
...
-2
w/2
------ U/5
-3
--o--- X1
--x--- X2
0
1
2
3
Time (sec)
4
Robotics Research Laboratory
5
6
89
Response with integral control
3
2
OUTPUTS
1
0
-1
...
-2
w/2
------ U/5
-3
--o--- X1
--x--- X2
0
1
2
3
Time (sec)
4
Robotics Research Laboratory
5
6
90
Integral control with added zero
3
2
OUTPUTS
1
0
-1
...
-2
w/2
------ U/5
-3
--o--- X1
--x--- X2
0
1
2
3
Time (sec)
4
Robotics Research Laboratory
5
6
91
Disturbance Estimation-Input Disturbance
w (k )
+
r (k )
N
+
+

-
u (k ) +


plant
y (k )
-
w (k )
K
estimator
x (k )
x (k  1)  Φx (k )  Γu (k )  Γ1w (k )
y (k )  Hx (k )
Robotics Research Laboratory
92
Disturbance Modeling
constant disturbance
w 0
sinusodial disturbance
w  ω02w
xd  Fd xd ,
w  Hd xd (continuous-time)
xd (k  1)  Φd xd (k ),
w (k )  H d x d ( k )
Robotics Research Laboratory
93
ex) sinusoidal disturbance
 xd 1   0
 x    ω 2
 d2   0
1  x d 1 
 Φd xd ,



0   xd 2 
 xd 1 
w  1 0     Hd xd
 xd 2 
 x (k  1)  Φ Γ1Hd   x (k )  Γ 
 x (k  1)    0 Φ   x (k )    0  u (k )
d  d
 d
 
  
Φw
Γw
augmented state
 x (k ) 
y (k )   H 0  

x
(
k
)
 d 
Hw
Φw
Hw  should be observable.
Robotics Research Laboratory
94
Bias estimation - Step disturbance
3
2
OUTPUTS
1
0
-1
... w/2
-------o----x--+ +
-2
-3
0
1
2
3
Time (sec)
4
U/5
X1
X2
+ W bar/2
5
6
A unit reference input at t=0 and a step disturbance at t=2 sec with bias estimation
Robotics Research Laboratory
95
Sinusoidal input disturbance rejection
3
2
OUTPUTS
1
0
-1
-2
-3
0
1
2
3
--o--- X1, output
------ w, disturbance
+ + + w bar, disturbance estimate
4
5
6
7
8
9
Time (sec)
10
A sinusoidal input disturbance with disturbance rejection
Robotics Research Laboratory
96
Disturbance Estimation-Output Disturbance
v (k )
r (k )
N
+
u (k )

plant
+
y (k )
-
+

v (k )
K
x (k )
estimator
x (k  1)  Φx (k )  Γu (k )
xd (k  1)  Φd xd (k ),
y (k )  H Hd  ( x (k )T , xd (k )T )T
Robotics Research Laboratory
97
Sinusoidal output disturbance rejection
3
2
OUTPUTS
1
0
-1
-2
-3
0
1
2
3
. . . . . X1+w, measured output, y`
---o--- X1, output y
-------- w, disturbance
+ + + w bar, disturbance estimate
4
5
6
7
8
Time (sec)
9
10
A sinusoidal sensor disturbance (measured error) with disturbance rejection
Robotics Research Laboratory
98
Effect of Delays
Robotics Research Laboratory
99
Sensor delays
y1d (k  1)  y (k ) one cycle delay
y 2d (k  1)  y1d (k ) two cycle delay
 x(k  1)  Φ 0 0   x(k )  Γ
 y (k  1)    H 0 0   y (k )   0  u (k )
 1d
 
  1d
  
 y 2d (k  1)   0 1 0   y 2d (k )  0 
 x (k ) 
y d (k )  0 0 1  y1d (k ) 
 y 2d (k ) 
Robotics Research Laboratory
100
Actuator delays
x(k  1)  Φx(k )  Γ1u(k  1)  Γ2u(k )
xn 1(k )  u(k  1)
 x(k  1)  Φ Γ   x(k )  Γ2 
 x (k  1)    0 0   x (k )    1  u (k )
  n 1   
 n 1
 
 x (k ) 
y (k )  H 0 

x
(
k
)
 n 1 
Robotics Research Laboratory
101
Robotics Research Laboratory
102
0
-4
OUTPUTS
--------- U/3
---o---- Y
-2
0
4
OUTPUTS
2
(b) classical FB w/delay, K=9.3
2
0
4
4
2
2
0
--------- Ud/3
---o---- Y
-2
-4
0
1
2
Time (sec)
--------- Ud/3
---o---- Y
-2
-4
1
2
3
Time (sec)
(c) estimator w/delay, K=9.3
OUTPUTS
OUTPUTS
Fig. 8.37(a) Ideal case (w/o delay, K=9.3)
4
0
1
2
3
Time (sec)
(d) classical FB w/delay, K=4
0
--------- Ud/3
---o---- Y
-2
3
-4
0
Robotics Research Laboratory
1
2
Time (sec)
3
103
2
0
--------- U/4
---o---- Y
-2
-4
(b) Classical FB w/delay, K=4
4
OUTPUTS
OUTPUTS
Fig. 8.38(a) Ideal case (w/o delay, K=9.3)
4
--------- Ud/4
---o---- Y
-2
-4
0
1
2
Time (sec)
--------- Ud/4
---o---- Y
-2
1
2
3
Time (sec)
(d) Cur. estimator w/delay, K=9.3
4
OUTPUTS
OUTPUTS
1
2
3
Time (sec)
(c) Pred. estimator w/delay, K=9.3
4
0
0
-4
0
2
2
0
2
0
--------- Ud/4
---o---- Y
-2
3
-4
0
Robotics Research Laboratory
1
2
Time (sec)
3
104