Introduction to Digital Signal Processing

Download Report

Transcript Introduction to Digital Signal Processing

Lecture 12: Parametric Signal Modeling

XILIANG LUO 2014/11 1

Discrete Time Signals  Mathematically, discrete-time signals can be expressed as a sequence of numbers π‘₯ 𝑛 , 𝑛 ∈ 𝑍  In practice, we obtain a discrete-time signal by sampling a continuous time signal as: π‘₯ 𝑛 = π‘₯ π‘Ž (𝑛𝑇) 1/T where T is the sampling period and the sampling frequency is defined as

Representation of Sequences by FT  Many sequences can be represented by a Fourier integral as follows: π‘₯ 𝑛 = 1 πœ‹ 2πœ‹ βˆ’πœ‹ 𝑋 𝑒 π‘—πœ” 𝑒 π‘—πœ”π‘› π‘‘πœ” 𝑋 𝑒 π‘—πœ” = π‘₯[𝑛] 𝑒 βˆ’π‘—πœ”π‘› 𝑛  x[n] can be represented as a superposition of infinitesimally small complex exponentials  Fourier transform is to determine how much of each frequency component is used to synthesize the sequence

Z-Transform a function of the complex variable: z If we replace the complex variable z by 𝑒 π‘—πœ” , we have the Fourier Transform!

Periodic Sequence  Discrete Fourier Series For a sequence with period N, we only need N DFS coefs

Discrete Fourier Transform DFT is just sampling the unit-circle of the DTFT of x[n]

Parametric Signal Modeling A signal is represented by a mathematical model which has a Predefined structure involving a limited number of parameters.

A given signal is represented by choosing the specific set of parameters that results in the model output being as close as possible in some prescribed sense to the given signal.

7

Parametric Signal Modeling s’[n] v[n] LTI H(z) 8

All-Pole Modeling 𝐻 𝑧 = 𝐺 1 βˆ’ 𝑝 π‘˜=1 π‘Ž π‘˜ 𝑧 βˆ’π‘˜ 𝑝 𝑠 𝑛 = π‘Ž π‘˜ π‘˜=1 𝑠[𝑛 βˆ’ π‘˜] + 𝐺𝑣[𝑛] All-pole model assumes the signal can be approximated as a linear combination of its previous values!

οƒ  this modeling is also called:

linear prediction

9

All-Pole Modeling  Least Squares Approximation 𝑝 𝑠 𝑛 = π‘Ž π‘˜ π‘˜=1 𝑠[𝑛 βˆ’ π‘˜] + 𝐺𝑣[𝑛] ∞ min 𝑛=βˆ’βˆž 𝑠 𝑛 βˆ’ 𝑠[𝑛] 2 10

All-Pole Modeling  Least Squares Inverse Model 𝐻 𝑧 = 𝐺 1 βˆ’ 𝑝 π‘˜=1 π‘Ž π‘˜ 𝑧 βˆ’π‘˜ 𝑝 𝐴 𝑧 = 1 βˆ’ π‘Ž π‘˜ 𝑧 βˆ’π‘˜ π‘˜=1 g[n] s[n] LTI A(z) 11

All-Pole Modeling  Least Squares Inverse Model s[n] LTI A(z) 𝑝 𝑔 𝑛 = 𝑠 𝑛 βˆ’ π‘Ž π‘˜ 𝑠 [𝑛 βˆ’ π‘˜] π‘˜=1 𝑒 𝑛 = 𝑔 𝑛 βˆ’ 𝐺𝑣[𝑛] g[n] 12

All-Pole Modeling  Least Squares Inverse Model 𝑒 𝑛 = 𝑔 𝑛 βˆ’ 𝐺𝑣[𝑛] min β„° = 𝑒 𝑛 2 β„° = 𝑒 2 [𝑛] + 𝐺 2 𝑣 2 [𝑛] βˆ’ 2G 𝑣 𝑛 𝑒[𝑛] 𝑝 π‘Ž π‘˜ π‘˜=1 𝑠 𝑛 βˆ’ 𝑖 𝑠[𝑛 βˆ’ π‘˜] = 𝑠 𝑛 βˆ’ 𝑖 𝑠[𝑛] Yule-Walker equations 13

Linear Predictor 𝑝 𝑒 𝑛 = 𝑠 𝑛 βˆ’ π‘Ž π‘˜ 𝑠 [𝑛 βˆ’ π‘˜] π‘˜=1 1.

2.

if input v[n] is impulse, the prediction error is zero if input v[n] is white, the prediction error is white s[n] Linear Predictor + e[n] s’[n] 14

Deterministic Signal min β„° = 𝑒 𝑛 2 𝑝 π‘Ž π‘˜ π‘˜=1 𝑠 𝑛 βˆ’ 𝑖 𝑠[𝑛 βˆ’ π‘˜] = 𝑠 𝑛 βˆ’ 𝑖 𝑠[𝑛] Minimize total error energy will render the following definitions: πœ™ 𝑠𝑠 𝑖, π‘˜ : = 𝑠 𝑛 [𝑠[𝑛 βˆ’ 𝑖 βˆ’ π‘˜ ] = π‘Ÿ 𝑠𝑠 [𝑖 βˆ’ π‘˜] 𝑛 𝑝 π‘Ž π‘˜ π‘Ÿ 𝑠𝑠 π‘˜=1 𝑖 βˆ’ π‘˜ = π‘Ÿ 𝑠𝑠 [𝑖] 15

Random Signal min β„° = 𝑒 𝑛 2 𝑝 π‘Ž π‘˜ π‘˜=1 𝑠 𝑛 βˆ’ 𝑖 𝑠[𝑛 βˆ’ π‘˜] = 𝑠 𝑛 βˆ’ 𝑖 𝑠[𝑛] Minimize expected error energy will render the following definitions: πœ™ 𝑠𝑠 𝑖, π‘˜ ≔ 𝐸{𝑠 𝑛 [𝑠[𝑛 βˆ’ 𝑖 βˆ’ π‘˜ ]} = π‘Ÿ 𝑠𝑠 [𝑖 βˆ’ π‘˜] 𝑝 π‘Ž π‘˜ π‘Ÿ 𝑠𝑠 π‘˜=1 𝑖 βˆ’ π‘˜ = π‘Ÿ 𝑠𝑠 [𝑖] 16

All-Pole Spectrum All-pole method gives a method of obtaining high-resolution estimates of a signal’s spectrum from truncated or windowed data!

Spectrum Estimate = 𝐺 1 βˆ’ 𝑝 π‘˜=1 π‘Ž π‘˜ 𝑒 βˆ’π‘—πœ”π‘˜ 2 17

All-Pole Spectrum Spectrum Estimate = 𝐺 1 βˆ’ 𝑝 π‘˜=1 π‘Ž π‘˜ 𝑒 βˆ’π‘—πœ”π‘˜ 2 For deterministic signal, we have the following DTFT: 𝑀 𝑆(𝑒 π‘—πœ” ) = 𝑠 𝑛 𝑒 βˆ’π‘—πœ”π‘› 𝑛=0 π‘€βˆ’|π‘š| π‘Ÿ 𝑠𝑠 π‘š = 𝑛=0 𝑠 𝑛 𝑠[𝑛 + |π‘š|] 𝑅 𝑠𝑠 𝑒 π‘—πœ” = 𝑆 𝑒 π‘—πœ” 2 18

All-Pole Analysis of Speech 19

Solution to Yule-Walker Eq.

Ξ¦π‘Ž = Ξ¨ 20

Solution to Yule-Walker Eq.

21

All-Zero Model Moving-Average Model: 𝐾 𝑒 𝑛 = 𝑣 𝑛 + 𝑏 π‘˜ 𝑣[𝑛 βˆ’ π‘˜] π‘˜=1 𝐾 𝐻 𝑧 = 1 + 𝑏 π‘˜ 𝑧 βˆ’π‘˜ π‘˜=1 22

ARMA Model 𝑀 𝐾 𝑒 𝑛 + π‘Ž π‘˜ 𝑒[𝑛 βˆ’ π‘š] = 𝑣 𝑛 + 𝑏 π‘˜ 𝑣[𝑛 βˆ’ π‘˜] π‘˜=1 π‘˜=1 𝐻 𝑧 = 1 + 𝐾 π‘˜=1 1 + 𝑀 π‘˜=1 𝑏 π‘˜ 𝑧 βˆ’π‘˜ π‘Ž π‘˜ 𝑧 βˆ’π‘˜ 23

Wold Decomposition Wold (1938) proved a fundamental theorem: any stationary discrete time stochastic process may be decomposed into the sum of a general linear process and a predictable process, with these two processes being uncorrelated with each other.

π‘₯ 𝑛 = 𝑒[𝑛] + 𝑠[𝑛] ∞ 𝑒 𝑛 = 𝑏 π‘˜ 𝑣[𝑛 βˆ’ π‘˜] π‘˜=0 ∞ 𝑣 𝑛 = π‘Ž π‘˜ 𝑣[𝑛 βˆ’ π‘˜] π‘˜=1 24