Transcript PENDEKATAN NEURAL NETWORK UNTUK PEMODELAN TIME …
Analisis Deret Waktu: Materi minggu kedua
1.
2.
3.
4.
5.
6.
7.
8.
Pendahuluan Naïve Models dan Moving Average Methods Exponential Smoothing Methods Regresi dan Trend Analysis Model ARIMA Box-Jenkins
Regresi Berganda dan Time Series Regresi Metode Dekomposisi
Studi Kasus : Model ARIMAX (Analisis Intervensi, Fungsi Transfer dan Neural Networks)
Referensi Utama
. Hanke, J.E. and Reitsch, A.G. ( 1995 “Business Forecasting” 5 th and 7 th edition, Prentice Hall. & 2001)
Chapter 4: Exploring Data Pattern …
Measuring Forecasting Error
Chapter 5: Moving Average and Smoothing Methods
Naïve Models
Averaging Methods
Exponential Smoothing Methods
Kaitan Pola Data dengan Metode Peramalan
Stationer Time Series Patterns Trend Effect Seasonal Effect Trend and Seasonal
Naïve Model Simple Averages Moving Averages Single Exponential Smoothing Naïve Model Double Moving Averages Double Exponential Smoothing Naïve Model Winter’s Model
Naïve Model The
recent periods
are the best predictors of the future.
1.
The simplest model
Y
ˆ
t
1
for stationary
Y t
data is 2.
The simplest model
Y
ˆ
t
1
for
Y t
trend data is
(
Y t
Y t
1 ) or
Y
ˆ
t
1
Y t Y t Y t
1
3.
The simplest model
Y
ˆ
t
1
for seasonal data is
Y
(
t
1 )
s
MINITAB implementation
Time Series Plot
MINITAB implementation … (continued)
Naïve 1 Naïve 2 Naïve 3
MINITAB implementation … (continued)
Naïve 1 Naïve 2 Naïve 3
MINITAB implementation … (continued)
Naïve 1 Naïve 2 Naïve 3
MSE.1 = 28547.5 , MSE.2 = 53592.5 , MSE.3 = 4567.5
Measuring Forecasting Error …
MSE/MSD (mean squared error)
rata-rata kuadrat kesalahan (residual atau error).
MAD
(mean absolute deviation)
ukuran kesalahan peramalan dalam unit ukuran yang sama dengan data aslinya.
MAPE
(mean absolute percentage error)
persentase kesalahan absolut rata-rata .
MPE
(mean percentage error)
persentase kesalahan rata-rata.
Average Methods
1. Simple Averages
obtained by finding the
mean for all the relevant values
then
using this mean to forecast the next period
.
and
Y
ˆ
t
1
t n
1
Y t n
for stationary data 2.
Moving Averages
obtained by finding the
mean for a specified set of values
and then
using this mean to forecast the next period
.
M t
Y
ˆ
t
1 (
Y t
Y t
1
Y t
n
1 )
n
for stationary data
Average Methods … (continued)
3. Double Moving Averages
one set of moving averages is computed , and then a second set is computed as a moving average of the first set .
(i).
(ii).
M t M t
Y
ˆ
t
1 (
M t
(
Y t
Y t
1
n
Y t
n
1 )
M t
1
n
M t
n
1 ) (iii).
a t
2
M t
M t
(iv).
b t
n
2 1 (
M t
M t
)
Y
ˆ
t
p
a t
b t p
for a linear trend data
MINITAB implementation
MINITAB implementation … (continued)
Case Study of Video Store : MINITAB implementation
Moving Averages Double Moving Averages
Moving Averages Result … (continued)
Moving Averages
VS
Double Moving Averages Results
MA or Moving Averages DMA or Double Moving Averages
MSE.MA = 132.67 , MSE.DMA = 63.7
Exponential Smoothing Methods
Single Exponential
Y
ˆ
t
1
Y t
Smoothing
( 1 )
Y
ˆ
t
for stationary data Exponential Smoothing Adjusted for Trend 1. The exponentially smoothed series : A t = Y t + (1 ) (A t-1 + T t-1 ) :
Holt’s Method
2. The trend estimate : T t = (A t A t-1 ) + (1 ) T t-1 3. Forecast p periods into the future :
Y
ˆ
t
p
A t
pT t
Exponential Smoothing Adjusted for Trend and Seasonal Variation :
Winter’s Method
1. The exponentially
smoothed
series :
A t
Y t S t
L
( 1 ) (
A t
1
T t
1 ) 2. The
trend
estimate :
T t
(
A t
A t
1 ) ( 1 )
T t
1 3. The
seasonality
estimate :
S t
4.
Forecast p
Y t A t
( 1 )
S t
1 periods into the future :
Y
ˆ
t
p
(
A t
pT t
)
S t
L
p
Three parameters models
SES : MINITAB implementation SES dengan alpha 0,1 SES dengan alpha 0,6
SES : MINITAB implementation … (continued)
SES : MINITAB implementation … (continued)
DES (Holt’s Methods) : MINITAB implementation … (continued) DES dengan alpha 0,3 dan beta 0,1
DES : MINITAB implementation … (continued)
Winter’s Methods : MINITAB implementation Winter’s Methods dengan alpha 0,4; beta 0,1 dan gamma 0,3
Winter’s Methods : MINITAB implementation … (continued)