Transcript Slide 1
b-delayed proton-decay for nuclear astrophysics Livius Trache Cyclotron Institute Texas A&M University EURISOL User Group Workshop, Florence, Jan 2008 Indirect methods in NPA (w, w/o RNB) Coulomb dissociation Transfer reactions (ANC method) Breakup of loosely bound nuclei Trojan Horse Method Others – (other) spectroscopic info: Jp, Eres, G to estimate direct terms: Jp, l, config mixings … variae resonances (Jp, Eres, G’s) – variae, including b-decay b-delayed p-decay Reaction spectroscopy … resonant elastic scatt., etc. A. Coc – OMEG07 !!! A. Coc – OMEG07 !!! Summary b-decay of 23Al → 22Na(p,g)23Mg b-delayed proton decay of 23Al Production and separation Decay measurements: b, g, p b- and b-delayed p-decay of 31Cl → 30P(p,g)31S Connection to EURISOL physics A challenge: missing g-rays from 22Na Gamma-ray space-based telescopes to detect current (on-going) nucleosynthesis Astrophysical g-ray emitters 26Al, 44Ti, … and 22Na Satellites observed g-rays from 26Al (T1/2=7 ·105 y), 44Ti, etc., but not from 22Na (2.6 y) (COMPTEL, INTEGRAL)! 20Ne(p,g)21Na(p,g)22Mg(b,n)22Na Depleted by 22Mg(p, g)23Al ?! Depleted by 22Na(p, g)23Mg ?! 22Mg(p,g)23Al - cross section dominated by direct and resonant capture to first exc state in 23Al 22Na(p, g)23Mg dominated by resonant capture 22Na 3+ β+ 2+ γ (1.275 MeV) 0+ 22Ne Explosive H burning in novae & IAS in Tz=-3/2 nuclei Isospin mixing GT strength distribution MARS In-flight RB production 24Mg 23Al 48A MeV 40A MeV Purity: 90%, or >99% after en degrader Intensity: ~ 4000 pps First time - very pure & intense 23Al (p,2n) reaction Primary beam 24Mg @ 48A MeV – K500 Cycl Primary target LN2 cooled H2 gas p=1.6 atm Secondary beam 23Al @ 40.2A MeV b decay study of pure RB samples Betas and beta-gamma coincidences parent k 5 d=49 mm g b i b+ HpGe detector j Plastic scintillator 0 Nb daughter Goal: determine the beta decay scheme the beta branching ratios: Nbi /Ntot and absolute log ft b b 0 N b 0 + b 1 N b 1 + b 2 N b 2 + ... + daughter + imp 4p Ngb ( Eij ) gph ( Eij )bijg b i N b i + b k N b k bkig + corr k i direct b pop. g from above b-g coincidence spectrum 5/2+ 7/2+ IAS 23Al BGO Tighe ea, LBL 1995 Perajarvi ea, JYFL 2000 5/2+ 23Al Proton br. total=1.1% 0.25% 1/2+ 0.446(4)s β+ Qec=12240keV β+ 0.48% 9548 8456 8164 8003 7877 p 22Mg(p,g)23Al IAS: ft=2140 s +/-5% 7803 IAS 5/2+ 7787 (7/2)+ 0.38% 22Na E=207 keV => Ep= 198 keV DE=16 keV Sp=7580 keV 22Na(p,g)23Mg 6985 5/2+ 6575 5/2+ resonances Most important: wg7787=2.6(9) meV 2905 (3,5/2)+ 2359 1/2+ NO! 2051 7/2+ data from 4 exp: above + Jenkins PRL 2004 + present data 450 5/2+ 0 3/2+ 23Mg Y Zhai thesis VE Iacob, et al., PRC 74, Oct. 2006 Energy degrader (rotating, motorized) 275 mm OD F150 mm thermocooler connectors 64 mm >110 mm E=Ep+kErecoil+<DEb> 18” dia chamber F=80 mm p-detector – v. thin Si strip 65 mm b-detector – thick Si det 1 mm g-detector – HPGe 70% effic Pulsed beam 18-Jul-15 Back chamber, flange & detector holder Isotope selection with MARS E Pos ~ q/m Final cut with focal plane slits Si 1000 mm Si strip 61 mm “HI telescope mode” – control implantation Signal=EHI 17 mm Signal=DEHI HI Dp/p=+/-0.25% DE (p) 36° Signal=DEb 30° Signal=Ep+DEb “b-proton mode” measure simultaneously: • b-proton and • b-g coinc. Si stops protons: ½ 65 mm Ep<1.5 MeV E (b) 0° 23Al implantedSecondary beam distribution Measurements • g-ray detector calibration – 24Al implanted at p-det position • Implantation control in “DE-E mode” • 23Al b-delayed p-decay – 23Al implanted in p-det • p-detector b backgr – 22Mg implanted in p-det • b-detector calibration – 20Na implanted in b-det • p-detector calibration: – – 20Na (ba) implanted in p-det 21Mg (bp) implanted in p-det • Off-line Ge det efficiency calibration with sources: 152Eu, 60Co, 137Cs 23Al - figures from Run0507 E=Ep+kErecoil+<DEb> 20Na 21Mg Run1107 – Nov. 2007 • 31Cl decay. Goals: – b-decay – b-delayed proton-decay • Measurements – b-g and b-p coinc with source in p-det – b-g coincidences with source stopped in foil – Calibrations: 32Cl and 29S 31Cl b-decay - status 2006 t=150(25) ms MARS In-flight RB production 32S 31Cl 40A MeV 34A MeV Purity: > 85 % (at target det) Intensity: ~ 2-3000 pps difficult - pure & intense 31Cl (p,2n) reaction Primary beam 32S @ 40A MeV – K500 Cycl Primary target LN2 cooled H2 gas p=2 atm Secondary beam 31Cl @ 34 A MeV 31Cl production and separation 31Cl production and separation 32Cl 31Cl 29S 31Cl production and separation 31Cl 29S Y-Z profile of stopped 31Cl X-Y profile (Beam Spot) 200 4000 5000 IAS 6000 Energy(keV) 10 2 7000 DE 3023.9 SE 3536.3 3620.6 3700.0 3078.7 2235.6 2000 2961.2 2746.1 2615.4 2424.1 2036.1 1000 6285.9 3 1723.2 1779.2 10 SE 5773.4 600 5035.2 4 1248.3 + - ee 5 4871.2 10 583.8 0 SE 4523.4 10 4048.4 10 4159.5 4211.5 SE 3536.3 400 3620.6 3700.0 Counts 31Cl b-g-decay 3000 4000 a) 1 SE=Single Escape DE=Double Escape b) 0 8000 31Cl p-spectra PRELIMINARY! 29S p-detector calibration ~ 10 pps, 8 hr measurement Results 23Al, 31Cl b-delayed p-decay Technique works well – can go to Ep~200 keV and, maybe, lower Can work with lifetimes ~100 ms or less Very selective: can separate well beam cocktails (by implantation depths) Very sensitive: could obtain results for 21Mg, 29S at rates ~ 1-10 pps in 8 hrs Strengths: Good mass separation (MARS) In-flight production: need 30-50 MeV/u (can be implanted) Can work with short lifetimes ~100 ms or less Nuclear Physics in the rp-process Xe (54) I (53) Te (52) End: SnSbTe Cycle (Schatz 2001) Sb (51) Sn (50) In (49) Cd (48) Ag (47) Pd (46) Rh (45) Ru (44) Adapted from H. Schatz, 2006 5758 Tc (43) Mo (42) Nb (41) Zr (40) Y (39) Sr (38) 56 5455 Rb (37) Kr (36) Br (35) Se (34) 53 5152 4950 mass and half-life known As (33) Ge (32) Ga (31) Zn (30) 45464748 424344 half-life known 41 Cu (29) 37383940 Ni (28) Co (27) 33343536 Fe (26) Mn (25) 3132 Cr (24) V (23) 2930 Ti (22) Sc (21) 25262728 Ca (20) K (19) 2324 Ar (18) Cl (17) 2122 S (16) P (15) 17181920 Si (14) Al (13) 1516 Mg (12) Na (11) 14 Ne (10) F (9) 11 1213 O (8) N (7) 9 10 C (6) B (5) 7 8 Be (4) seen rate based on some exp. data Theoretical reaction rate predictions: Statistical model : not applicable near drip line Li (3) He (2) 5 6 H (1) 3 4 n (0) 2 0 1 (Rauscher et al. 1997) Shell model: available up to A~63 but large uncertainties (often x1000 - x10000) (Herndl et al. 1995, Fisker et al. 2001) EURISOL connection With EURISOL beams close to p-dripline (“long lived”) can access more p-rich, shorter lived isotopes, at higher masses needed in rp-process – not accessible now use with in-flight production technique (“tertiary” beam) need 30-50 MeV/u accelerator need a good in-flight mass separator Collaborators • A Banu, JC Hardy, VE Iacob, M McCleskey, G Tabacaru, RE Tribble – Cyclotron Institute, Texas A&M University • J Aysto, A Saastamoinen, A Jokinen – Univ of Jyvaskyla • PJ Woods, T Davinson – Univ of Edinburgh • D Jenkins, MA Bentley – Univ of York • L Achouri, B Roeder – LPC Caen