Transcript Document
Физика фундаментальных взаимодействий 2009 Пределы масс и острова стабильности сверхтяжелых ядер Ю.Ц.Оганесян Лаборатория ядерных реакций им. Г.Н. Флерова Объединенный институт ядерных исследований Сессия-конференция секции ядерной физики ОФН РАН 23-27 ноября, 2009г., ИТЭФ, Москва Chart of nuclides Macroscopic theory (Liquid Drop Model) about 50 years ago… proton number 120 TSF = 2·10-7 y 110 TSF < 10-14 s 102No / Tα ≈ 2 s Spontaneous fission 100 Th 90 Bi 9 92U / Tα = 4.5·10 y TSF = 1016 y 80 82Pb / stable 70 110 120 130 140 150 160 170 180 neutron number 190 Spontaneous Fission Macroscopic theory (Liquid Drop Model) Exp. 35 30 neutron capture 208Pb 20 25 10 LogTSF / s Bf / MeV 30 Fission Barrier Height 20 15 0 LDM 238U 10 255Fm -10 5 SF-isomers 6.0 MeV fusion with heavy ions -20 0 0.60 0.70 0.80 Fissility parameter 0.90 x 0.70 0.75 0.85 0.80 0.90 Fissility parameter x Ю.Ц. Оганесян «Пределы масс атомных ядер» 27 ноября 2009г. ИТЭФ, Москва 0.95 Nuclear shells (macro-microscopic approach) Chart of nuclides proton number 120 X 114 110 spherical shells 108 184 100 100 162 deformed shells 90 82 80 Pb 152 deformed shells spherical shells 126 70 110 120 130 140 150 160 170 180 neutron number 190 Predictions of the microscopic theory …and Half - Lives Fission Barriers 15 Bf / MeV Exp. Fission Barrier Height 10 255Fm LogTSF / s 20 Z=112 114 116 10 238U 114 116 0 5 -10 LDM 0 LDM -20 0.70 0.90 0.80 Fissility Parameter x 0.70 0.75 0.90 0.95 0.80 0.85 Fissility Parameter x R. Smolańczuk, Phys. Rev. C 56 (1997) 812 New lands New lands -5 0 Proton number 120 Microscopic theory 5 10 about 40 1µs 1s years 1h ago… 1y 15 LogT1/2 s 1My Island of Stability Shoal shoal 110 Peninsula peninsula 100 90 Continent continent Sea of Instability 80 70 100 110 120 130 140 150 160 Neutron number 170 180 190 Reaction of Synthesis Reactions of synthesis Cold fusion Act.+48Ca proton number 114 island of stability of superheavy nuclei Light ions shoal of deformed nuclei 108 Th 90 target from U “peninsula” Pu N WN NE W peninsula Pb continent target 142 146 from “continent” 126 162 Neutron capture SW neutron number Ю.Ц. Оганесян «Пределы масс атомных ядер» 27 ноября 2009г. ИТЭФ, Москва 184 Reactions of Synthesis 120 SHE protons → -7 110 Cold fusion Act.+48Ca -5 -6 -5 100 -6 Hot fusion -4 -3 -4 Neutron capture -3 -2 -4 90 U Th -2 Pb Pb Bi-14 neutrons → 80 120 130 140 150 160 170 Ю.Ц. Оганесян «Пределы масс атомных ядер» 27 ноября 2009г. ИТЭФ, Москва 180 190 -30 10 22 Projectiles Ne Mg 34 S (5n) Cross sections σxn ~ (Γn / Γf)x; х – number of evaporated 4n-cross section (cm2) Yu. Oganessian et al. Phys. Rev. 26 No -32 10 Rf 48Ca Db -34 Sg Bh 10 Hs -36 Ex=40-50 MeV 10 114 neutrons (Γn / Γf) ~ exp [(Bf – Bn)] 116 112 Ds 112 -38 10 Bf = BfLD + ΔEShell 0 152 140 150 162 160 184 180 170 Neutron number 190 Calculated Barriers Heights (MeV) Proton number Z 120 Act + P. Moller et al., Phys. Rev., C79, 064304 (2009) spherical deformed 110 48Ca 298114 deformed 100 Bf (MeV) 1 2 3 4 5 6 7 8 90 spherical 120 130 208Pb 140 150 160 170 180 Neutron number N Ю.Ц. Оганесян «Пределы масс атомных ядер» 27 ноября 2009г. ИТЭФ, Москва 190 Reactions of Synthesis Act. + 48Ca Projectiles 48Ca Energy: 235-250 MeV Intensity: 1.0-1.2 pμA Consumption: 0.5 mg/h Beam dose: (0.3-3.0)∙1019 Targets: thickness (mg/cm2) Isotope enrichment (%) 233U 0.44 99.97 238U 0.35 99.3 237Np 0.35 99.3 242Pu Chemistry 0.40 1.4 99.98 99.98 244Pu 0.38 98.6 243Am Chemistry 0.36 1.2 99.9 99.9 245Cm 0.35 98.7 248Cm 0.35 97.4 249Bk 0.35 249Cf 0.34 ≥ 90 97.3 Experimental Setup Measured parameters: For recoils: “veto” detectors position sensitive strip detectors energy TOF positions For decay product: energy time positions side detectors SH-recoil Dubna Gas Filled TOF-detectors Recoil Separator Total detection efficiency: for α-particles…………..83% for SF-fragment…….~ 100% for both fragments……..42% Ю.Ц. Оганесян «Пределы масс атомных ядер» 27 ноября 2009г. ИТЭФ, Москва 246Cm + 48Ca, 3n 291 +48Ca, 3n3n 238U + 48Ca, 3n 279 4 110 287 2 114 10.01 MeV 283 283 3 112 0.54s 9.52 MeV 5.4s SF10% 9.70 MeV 108 0.26s SF>90% 9.30 MeV 0.42 s 116 6 267 104 106 8.54 MeV 48 s SF 228 MeV 381 s 20 0.65 mm 10 -3 -2 -1 0 1 2 3 Position deviation (mm) Yu. Oganessian J. Phys. G. 34 (2007) R165 Pixel: 6.5 mm2 252 No position 271 30 0 275 5 40 Counts / 0.1 mm 242Pu 1 Detector area ~5000 mm2 strip number 242Pu(48Ca; Alpha-particle spectra of SH-nuclei 245Cm(48Ca; 238U(48Ca; 2n, 3n)291,290114 3n, 4n)283,282112 249Cf(48Ca; even-odd 3n, 4n)287,286114 3n),294114 287 even-even 114 283 287 112 114 283 290 112 286 114 275 108 291 279 283 112 110 116 286 116 294 114 118 E 271 106 8.0 9.0 10.0 11.0 12.0 9.0 10.0 11.0 Alpha particle energy (MeV) 12.0 Excitation functions xn-channel cross sections from 242,244Pu+48Ca reactions the maximum cross sections for evaporation residues are observed at the excitation energy ~ 40 MeV (hot fusion). Cross sections / 3 MeV (relative units) 50 10 3n 2n 3n 4n 5n 4n 5 1 2n 0.5 5n 0.1 25 30 35 40 55 50 45 Excitation energy (MeV) Ю.Ц. Оганесян «Пределы масс атомных ядер» 27 ноября 2009г. ИТЭФ, Москва Synthesis of Element 118 3n 245 Cm + 48 249 Ca Cf + Ca 2n 3 ev. 1 3n 291 11 ev. 116 10.74 MeV +32 114 26-9 ms 287 2 10.03 MeV +1.3 112 1.1 -0.4 s 283 3 9.55 MeV +8.3 110 7.0 -2.5 s 279 4 48 2 282 112 116 116 1 286 10.84 MeV +6.4 114 9.7 -2.8 ms 286 10.15 MeV 0.17 +0.09 -0.04 s 1 290 290 1 3 ev. 3 282 112 114 SF 10.16 MeV 0.22 +0.26 -0.08 s 202 MeV 0.9 +-0.1.30 ms 9.70 MeV 108 0.55+0.76 -0.19 s 275 5 271 6 267 104 106 _0.34 MeV 9.56 + 0.42 s Yu. Oganessian et al., Phys. Rev C 74, (2006) 044602 _0.36 8.84+ 91.1 s SF 240 MeV 21 min Ю.Ц. Оганесян «Пределы масс атомных ядер» 27 ноября 2009г. ИТЭФ, Москва 118 11.65 MeV 1.3 +1.5 -0.5 ms 10.82 MeV 14 +17 - 5 ms SF~50% SF 206 MeV, 1.5+1.0 -0.4 ms 294 Decay chains 237Np 243Am 293 242Pu, 245Cm 294 117 117 244Pu, 248Cm 89 decay chains was registered 115/287 115/288 87 ms 32 ms 249Cf 113/282 113/283 113/284 0.1 s 0.48 s 73 ms 111/27 8 111/279 0.17 s 4.2 ms 10.69 109/274 109/275 109/276 0.72 s 0.45 s 9.7 ms 9.76 10.33 107/270 107/271 107/272 9.8 s 1 min 8.93 9.02 270 105/266 105/267 105/268 1.2 d 0.37 h 1.2 h 104/268 Db 104/268 9.71 274 107 10.37 10.63 111/280 3. 6 s 9.75 10.12 10.00 281 282 111 111 10.59 10.46 289 290 115 115 285 286 113 113 249Bk(320d)+48Ca FLNR-ORNL-LLNL collaboration 278 109 36 nuclides June 2009 22 mg of 249Bk have been produced at Oak Ridge National Laboratory by intense neutron irradiation for 250 days in the High Flux Isotope Reactor Ю.Ц. Оганесян «Пределы масс атомных ядер» 27 ноября 2009г. ИТЭФ, Москва Confirmation Darmstadt 2007 GSI SHIP Reaction: 283 4 events 3 112 9.52+_ 0.02 MeV 6.9+6.9 -2.3 s 279 110 238 U + 48 Ca - 283 112 +3n TKE 210+32 -11 MeV +0.32 0.18 -0.07 s S. Hofmann et al., Eur. Phys. J. A32 (2007) 251 Dubna 2006-2007 CHEMISTRY Reaction: 242,244Pu + 48Ca FLNR / PSI 2 5 events 283 3 279 110 112 - 287,288114 3 114 events 287 2 10.04 MeV 284 + 3,4n 288 1 16 evens 114 2 _ 0.1 MeV 9.9+ 112 _ 0.12 MeV SF 9.49+ 0.1 s >3s TKE ~ 220 0.21+0.3 -0.1 s Dubna 2002-2004 DGFRS R. Eichler et al., Nature 447 (2007) 72 22 events 3 279 110 283 112 291 292 116 287 114 1 18 evens 2 _ 0.06 MeV 284 10.02 + 0.5+0.2 112 -0.1 s _ 0.06 MeV 9.54+ 3.8+1.2 -0.7 s _ 7 MeV SF>90% TKE 225 + 0.2+0.05 -0.04 s 116 288 114 _0.06 MeV 9.94+ 0.8+0.3 -0.2 s SF>90% _ 7 MeV TKE 228 + 0.1+0.03 -0.02 s Decay Properties 12.0 Theory: 118 Alpha decay energy (MeV) Z-even 11.0 116 10.0 114 108 112 9.0 106 110 Exp: 8.0 7.0 260 Z-even 270 280 290 Atomic mass number 300 18 Th. Spontaneous fission half-lives 16 14 Actinides N=152 N=152 N=184 12 Log TSF (s) 10 Z=112 Cf N=162 8 Superheavy nuclei Trans-actinides 6 Fm 4 108 2 Exp. 110 0 Cf-No Rf Sg Hs Ds 112 114 114 No -2 112 -4 Rf -6 -8 140 145 150 155 160 165 170 175 Neutron number 180 185 Half-life, T (s) 102 Half lives of nuclei with Z ≥ 110 111 110 sf 112 113 available for chemical studies 114 100 sf N=162 10-2 116 112 115 sf 111 118 112 -4 10-4 10 110 113 112 sf Act. + 48Ca 10-6 155 160 165 170 Neutron number 175 180 With Z >40% larger than that of Bi, the heaviest stable element, that is an impressive extension in nuclear survival. Although the SHN are at the limits of Coulomb stability, shell stabilization lowers: the ground-state energy, creates a fission barrier, and thereby enables the SHN to exist. The fundamentals of the modern theory concerning the mass limits of nuclear matter have obtained experimental verification Ю.Ц. Оганесян «Пределы масс атомных ядер» 27 ноября 2009г. ИТЭФ, Москва protons → Atomic structure and chemical properties of the SHE Nuclear structure and decay properties of the SHN 120 Search for new shells SHE -7 110 -5 -6 Search for SHE in Nature -4 -5 100 -3 -4 -3 -2 -4 90 U Th -2 Pb Bi-14 neutrons → 80 120 130 140 150 160 170 180 Ю.Ц. Оганесян «Пределы масс атомных ядер» 27 ноября 2009г. ИТЭФ, Москва 190 Chemical properties Atomic properties Relativistic Contraction rmax : principal maximum of the wave function of the outermost orbital 1,05 rel rmax /rmax non-rel 1,00 1s 2p 3p 2s 3s 4s 3d 4p 5s 0,95 5p 6p non-relativistic - 4d 6s Hg Pb 4f 0,90 ~ Z2 5d 7s relativistic 0,85 0,80 5f J.P. Desclaux, At. Data Nucl.. Data Tables 12, 311 (1973) 112 114 SHE 0,75 0 20 40 60 Z 80 100 Ю.Ц. Оганесян «Пределы масс атомных ядер» 27 ноября 2009г. ИТЭФ, Москва 120 Chemical isolation Chemical properties 1 1 H 1 2 2 Li Be 3 4 3 Na 11 Mg 3 12 6 4 8 7 9 10 11 18 He 13 14 15 16 17 B C N O F Ne Al Si P S Cl Ar 14 12 12 Ca Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 19 20 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd Cd In Sn Sn Sb Tc I Xe 37 38 39 40 42 43 44 45 46 47 48 48 49 50 50 51 52 53 54 Cs Ba W Re Os Ir Pt Au Hg Hg Ti Pb Pb Bi Po At Rn Rn 55 56 74 75 76 77 78 79 80 81 82 82 83 84 85 86 86 Fr Ra Rf Db Sg Bh Hs Mt Ds Ds Rg 87 88 104 105 106 107 108 109 110 110 112 112 113 114 114 relativistic 115 116 117 5 6 7 Hf Ta 72 Pu 94 Darmstadtium 4 K 111 118 Reaction: R. Eichler et al., Nature 447 (2007) 72 Compound Compound Hg(Au) Hg(Au) 242Pu(48Ca,3n)287114[0.5s]→α→283112[3.6s] and and 112(Au) 112(Au) Au SiO2 Ю.Ц. Оганесян «Пределы масс атомных ядер» 27 ноября 2009г. ИТЭФ, Москва -50 Hg 20 Relative yield % He/Ar + Hg + Rn Rn 112 1 4 -150 8 12 Gold 30 28 32 -200 Hg 0 Ice on gold -50 Rn 20 0 Relative yield % 24 50 40 -100 112 1 4 8 12 50 -150 16 20 Detector number 24 28 32 room temperature Ice 0 30 Hg 20 0 -200 50 40 on gold 10 gas flow 1.5 l/min 16 20 Detector number 50 10 gas flow 0.89 l/min -100 -50 on gold Rn -100 on ice! -150 112 1 4 8 12 16 20 Detector number 24 28 32 Temperature 0C 0 Ice metal – like Hg Gold Element 112 is a noble 30 0 50 Temperature 0C 40 10 gas flow 0.86 l/min Hg Rn -200 Temperature 0C Relative yield % on gold 50 Reaction: Compound Compound Pb(Au) and 114(Au) 242Pu(48Ca,3n)287114[0.5s] 1 283 2 112 287 114 10.02 MeV 0.5 s 9.54 MeV 110 3.8 s 281 SF 0.2 s TKE=225MeV 1 2 283 287 114 10.04 MeV 112 9.53 MeV 110 10.9 s 281 SF 0.24 s TKE= 220MeV Ю.Ц. Оганесян «Пределы масс атомных ядер» 27 ноября 2009г. ИТЭФ, Москва 1 1 18 He H 1 2 Li Be 3 4 3 Na 11 13 2 14 15 16 17 B C N O F Ne Al Si P S Cl Ar Periodic Table of Elements Mg 3 12 5 4 6 7 8 9 10 11 12 Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Tc I Xe 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 6 Cs Ba Hf Ta W Re Os Ir Pt Au Hg Ti Pb Bi Po At Rn 55 56 73 74 75 76 77 78 79 80 81 82 83 84 85 86 Fr Ra Rf Db Sg Bh Hs Mt Ds Rg 87 88 104 105 106 107 108 109 110 112 113 114 114 115 115 116 117 118 5 7 72 Darmstadtium Ca 4 K 111 ? more and more inert? Yu.Oganessian. Perspectives of JINR – ORNL Collaboration in the studies of SHE. JINR Scientific Council, Sept 24-25. 2009, Dubna Progress Progress in in HE-research HE-research “relativistic effect” in SH - atoms neutron shells neutron shells of SH-nuclei of SH-nuclei 162 protons cold fusion evidence of enhanced stability of SH nuclei 152 184 hot hot fusion fusion 105 chemistry chemistry of of TA-elements TA-elements fission modes 126 search for SHE in Nature SF-isomers 82 neutrons Спасибо за внимание к моему сообщению 20 Search for SHE In Nature Age of the Earth 15 search in the cosmic rays Spherical Shell 108 y 105 y 10 108 α - decay Log Tα (sec.) 1y 5 1d Deformed Shell β-stable nuclei 110 114 0 118 -5 108 112 -10 116 140 150 170 180 160 Neutron number 190 search in nature 120 110 Hs β- proton number 105 β- 100 proton drip line waiting point Pu U Th 90 Pb 82 80 β- A=278 184 waiting point 70 neutron drip line 60 A=195 50 50 126 100 120 140 160 180 neutron number 200 Extended Thomas-Fermi plus Strutinsky integral method Calculated fission barrier heights A. Mamdouh et al., Nucl. Phys. A679 (2001) 337 Bf < 2.5 MeV 2.5 MeV < Bf < 4.5 MeV 4.5 MeV < Bf < 6.5 MeV Bf > 6.5 MeV 120 3 110 Z=108 2 Z 1 100 -4 -2 90 -3 α-decay Cyclamen 1966 -4 4 140 3 160 2 β--decay EC 1 180 SF 200 N 220 Average number of neutrons per fission 7.0 Exp. asymm. fission Calc. 6.0 282 Sg 286 Hs symm. fission 5.0 268 Db symm. fission No 4.0 asymm. fission Cf 3.0 Bk Fm Cm Pu 2.0 U 1.0 220 230 240 250 270 260 Mass number A 280 290 300 Assuming for the SH-nuclide TSF = 109 years the counting rate 1 decay / year from a 1000-g metallic Os sample corresponds to the ratio Hs/Os: ~ 7·10-16 g/g or ~ 10-23 g/g 3 He - counters Os-sample 550 g. (metallic) Fréjus peak in the Earth's crust or in the meteorit’s matter in comparison with previous attempts the sensitivity is increased by a factor ~ 109 Modane Yu. Oganessian “Heaviest Nuclei” Int. Conf. Nuclear Structure & Dynamics. May 4-8, 2009, Dubrovnik, Croatia 10 9 4.56.10 y Age of the Earth search in nature LogT1/2 (years) 5 Z = 108 0 SF SF -5 -10 -15 140 150 170 180 160 Neutron number 190