Transcript Slide 1
Nanotribology of MoS2: Microscopic Simulations of Oxidation and Friction Tao Liang, W. Gregory Sawyer*, Scott S. Perry, Susan B. Sinnott and Simon R. Phillpot University of Florida Materials Science and Engineering *Mechanical and Aerospace Engineering Experimental Context MoS2 Structure •Identify oxidation mechanisms •Develop reactive bond-order (REBO) potential for MoS2 •MD Simulations of MoS2 tribology A B A B A B Vacuum-Air Cycling of MoS2 films STM Characterization of MOS2 Surface Substitution O for S of Bulk Structure • Atomic oxygen prevalent in low earth-orbit conditions • On space station, each sulfur is hit by 1 atom oxygen per second Oxygen DFT-LDA calculations show: DE ~ -1.7 eV (-39 kcal/mol) Substitution of S for O strongly energetically favored MoS2 Edge Structures 0% S terminated 50% S terminated Mo terminated 100% S terminated MoS2 Edge Structures 100% S terminated 50% S terminated S terminated 0% S terminated Six MoS2 Edge Structures 0% coverage Mo Termination S Termination 50% coverage 100% coverage Oxidation Energies of MoS2 Edge Structures 0% coverage 50% coverage 100% coverage -1.7 -1.7 Mo -1.4 -1.0 -1.7 -1.7 -1.7 -1.6 Termination -1.0 -2.1 S Termination -1.7 -1.7 -2.1 -1.8 -1.7 -1.5 -1.1 -2.3 -1.3 Thermal Oxidation (AFM) 1000 nm 500 nm MoO3 island on MoS2 (AFM) a) Oxidation conditions: 480 °C in the furnace with O2 flowing. b) The MoO3 island surface is not flat. 5 nm 5 nm MoS2 MoO3 Sheehan, Paul E.; Lieber, Charles M. Nanotribology and nanofabrication of MoO3 structures by atomic force microscopy. Science (1996), 272(5265), 1158-1161. S..Mo..S …...S..Mo..S MoS2 vs. Graphite Graphite MoS2 • Directional bonding – angular terms • Layered structures with vdW interactions • Captured for graphite in Adapted Intermolecular Reactive Empirical Bond Order (AIREBO) potential • Adapt REBO for MoS2 REBO Potential for Mo-S Systems Eb V R (rij ) bijV A (rij ) i Repulsive Term: Attractive Term: Bond Order: j i rij V (rij ) f (rij )(1 Q / rij ) Ae R c Pair-wise parameters: Q, A, α, B and β rij V (rij ) f (rij ) Be A c 1 bij (bij b ji ) 2 bij [1 fik (rik )G(cos(ijk )) Pij ( NiMo , NiS ...)]1/ 2 k i , j Cut-off function • Each Angular Term Coordination Term bond has one set of pair-wise parameters. • Each element has one set of many body parameters, G and P. Validation of Mo-S potential 20 Mo MoS2 Difference % 10 DFT 0 This Pot. -10 -20 -30 a B c11 c12 a c B c11 c12 Static Potential Energy Surface of MoS2 0.15 0.03 0.15 0.03 0.01 0.15 0.01 0.287 0.003 0.287 0.03 0.003 Path II 0.15 Path I Y 0.15 0.03 0.01 0.03 0.03 0.15 0.01 X DFT 0.003 Path II 0.287 Y 0.03 0.15 0.287 0.001 0.03 0.003 0.001 Path I 0.003 0.287 (nm) 0.001 0.003 0.003 0.287 0.003 0.287 0.001 X REBO (nm) MD Simulation of MoS2 Tribology DFT Rigid moving MD Thermostat Rigid moving Active Z Y X Fixed 17.4 nm Fixed 96 atoms 0K Static process System size: 12071 atoms Temperature: ~100 K Dynamic process Z Y X Dynamics of Frictional Sliding (nm) 3 Y-disp 2 1 0 0.06 X-disp Z-disp 0.04 0.02 0.00 -0.02 0 1 2 Sliding distance (nm) 3 Accomplishments • Thermodynamics for oxidation is strongly favorable • Flexible REBO potential for MoS2 • MD simulation of sliding friction of MoS2 • Thermal-transport properties of MoS2 (with Andrey Voevodin, AFRL) Opportunities • Oxidation kinetics • Elucidating nature of experimentally observed electronic defects • Role of step edges and oxidation on tribological performance