Transcript Slide 1

United Arab Emirates University
Engineering College of
Graduation Project (I) Course
Graduation Project Code: PETE 585
Submitted for Partial Fulfillment of the
B.Sc. Degree in Petroleum Engineering
Marwan Waleed alkhalifi
Walid Mohed AbdullHay
AbdulMohsen mohamed
Abdulaziz Mohamed
970710280
970711290
980710963
970710613
Acidizing Treatment
 The
aim of the acidizing.
 The
result of the acidizing.
 Acidizing
in the well.
The Carbonate Rock
 The
rock that our experiment has been run
on is from Hafit mountain.
 The
rock should be one big piece?
 Why
we choose rock from Hafit mountain?
Hafit Mountain Carbonate Rock
Core Samples
 Cutting
the big rock into small core
sample.
 Eight
 The
core sample.
dimensions of these core sample.
Core Samples Cutter
Core Samples
SATURATE THE CORE WITH
WATER

The procedure for the experiment:






Put the core in sealed chamber.
Start the vacuum pump which are connected to the sealed
chamber.
Keep the vacuum pump socking the air in the chamber for 24
hour.
The vacuum pump will sock until pressure inside the chamber
is -150 psi.
After that we open the valve that are connected to the saucer
which contain brine water.
The brine salt is 50,000 ppm in water (25 gm brine in 500 ml
water).
50,000
brine(mass) 
* 500 ml  25 gm
1,000,000
Vacuum Pump
Core Sample
Sealed Chamber
Vacuum Pump
Brine Water
THE POROSITY OF THE CORE
SAMPLE
 The
weight of the core when it is dry
should be taken.
 The weight of the core when it is saturated
with water should be taken.
 Applying the equation we can find the
porosity of each core.
 The data and result for the different cores
are been encountered in the table.
The Calculation of the Porosity
Water ( density)  1.056g / cc
Wsat  Wdry
Vp


Vb
 AM 1
w
2
r L
42.89  39.72
1.056

 18.56
2.245 2
 *(
) * 4.08
2
The Permeability of the Core
Sample
 The
core laboratories has been used to
know the flow rate of the water passing
through the core.
 This flow rate is calculated from the
volume of the water passing the core
divided by the time took for the water to
accumulate in the tube.
 From the flow rate that been calculated
then the permeability can be calculated
from an specific equation.
Core Laboratories
Pressure
Control
Nitrogen Cylinder
Pressure
Gauge
Overburden
Pressure
Pump
The Permeability Calculation
Visocisty( water)  1.15cp
V
4.25m l
Q AM 1 

 0.05895m l / sec
tim e 72.1sec
PAM 1  23 psi
K 
QL
AP
1.15* 0.05895* 4.08
K 
 0.0446darcy
2.245 2
 *(
) * ( 23 / 14.7)
2
K  44.6m d
Core Laboratories
The oil saturation & irreducible
water saturation

The oil has been injected into the core sample to
saturate it with oil.
 The core laboratories has been used to know
the volume of the oil with water passing through
the core.
 The volume of the water passing through the
core is been encountered and we should know
the total volume of water accumulated in the
tube.
 From the volume of the water we can calculate
the irreducible water saturation from a specific
equation.
Pressure
Control
Nitrogen Cylinder
Pressure
Gauge
Overburden
Pressure
Pump
Density( water)  1.056gm / cc
For(CW 1)
Vp 
wt .diff

3.59gm

 3.399cc
1.056gm / cc
Vp  Vwater
Swir 
*100%
Vp
3.399 2.75
Swir 
*100  19%
3.399
Swir  19%
So  1  Swir
So  1  0.19  0.81
The Result of the Experiment
Sample #
Sat.
Wt
Dry
Wt.
Wt.
Dff.
Vp
(cc)
Diam
.
(cm)
Length
(cm)
C.S
Area
(cm2)
Vb
(cc)
Φ%
K
(md)
Swir
%
So%
AM1
42.89
39.72
3.17
3.002
2.245
4.08
3.96
16.16
18.56
44.6
0.17
0.83
AM2
44.23
42.01
2.22
2.1
2.235
4.045
3.92
15.87
13.23
140.6
0.21
0.89
CW1
42.18
38.59
3.59
3.399
2.25
4.03
3.976
16.023
21.2
130
0.19
0.81
CW2
42.92
39.74
3.18
3.014
2,24
4.15
3.941
16.355
19
67
0.28
0.72
MC1
40.58
36.66
3.92
3.712
2.02
4.0
3.205
12.82
28.9
113
0.22
0.78
MC2
40.37
36.95
3.42
3.238
2.22
3.905
3.87
15.11
21
87
0.30
0.7
MC3
39.93
35.23
4.7
4.517
2.24
4.03
3.94
15.87
28
272
0.19
0.81
MC4
43.59
39.50
4.09
3.88
2.32
4.1
4.22
17.30
26
169.3
0.31
0.69
Strategy of the treatment

Effect of Rock permeability

Effect of HCL concentration

Effect of Flow Rate
Effect of HCL Con.

Q=1.0 cc/m
HCL
con.
10%
Core # K (md)
MC1
113
15%
CW1
130
20%
CW2
140
Effect of Rock Permeability

HCL concentration =
15% wt.
 Q=1.0 cc/min
Core #
K (md)
MC3
272
MC4
169
CW2
67
Effect 0f Flow Rate

Concentration of
HCL=15% wt
Core #
MC2
K
(md)
87
Q
(cc/m)
2.0
CW2
67
1.0
SEM (Scanning Electronic
Macroscopic)
1
mm2.
 Magnification
x1000.
The Result of the Experiment
Sample #
Sat.
Wt
Dry
Wt.
Wt.
Dff.
Vp
(cc)
Diam
.
(cm)
Length
(cm)
C.S
Area
(cm2)
Vb
(cc)
Φ%
K
(md)
Swir
%
So%
AM1
42.89
39.72
3.17
3.002
2.245
4.08
3.96
16.16
18.56
44
0.17
0.83
AM2
44.23
41.01
3.22
3.05
2.235
4.045
3.92
15.87
19.23
140
0.21
0.89
CW1
42.18
38.59
3.59
3.399
2.25
4.03
3.976
16.023
21.2
130
0.19
0.81
CW2
42.92
39.74
3.18
3.014
2,24
4.15
3.941
16.355
19
67
0.28
0.72
MC1
40.58
36.66
3.92
3.712
2.02
4.0
3.205
12.82
28.9
113
0.22
0.78
MC2
40.37
36.95
3.42
3.238
2.22
3.905
3.87
15.11
21
87
0.30
0.7
MC3
39.93
35.23
4.7
4.517
2.24
4.03
3.94
15.87
28
272
0.19
0.81
MC4
43.59
39.50
4.09
3.88
2.32
4.1
4.22
17.30
26
169
0.31
0.69
Preparation of the Different HCL
Concentration
 For
10% HCL we dissolved 277.7 ml conc.
HCL(36%) and add to it 1000 ml of H2O.
 For 15% HCL we dissolved 416.6 ml conc.
HCL(36%) and add to it 1000 ml of H2O.
Volume of the Acid
 For
20% HCL we dissolved 555.55 ml
conc. HCL(36%) and add to it 1000 ml of
H2O.
 The volume of the acid has been used is
30% of the pore volume.
For AM1
 VHCL= 0.3 PV
 VHCL= 0.3 * 3 cc = 0.9 cc
The Procedure of the Experiment for the
effect of the Flow Rate Study

We Injected mud into the core sample to damage the
core and reduce the permeability.

After that we injected 15% wt acid about 0.3 of PV.

We injected water to displace the acid in the core and
wait to become the pressure constant.

A constant flow rate of 2 cc/min for MC2 and 1 cc/min for
CW2.
Acid Treatment Unit
Control Panel
Pump
Core Holder
Pressure Gauge & Valves
Effect of HCL Concentration

Q=1.0 cc/m
HCL
con.
10%
Core # K (md)
MC1
113
15%
CW1
130
20%
CW2
140
Effect of Rock Permeability

HCL concentration = 15% wt.
 Q=1.0 cc/min
Core #
K (md)
MC3
272
MC4
169
AM1
67
Effect 0f Flow Rate

Concentration of HCL=15% wt
Core #
MC2
K
(md)
87
Q
(cc/m)
2.0
CW2
47
1.5
AM1
67
1.0
The Results of the Experiment
Sample #
Sat.
Wt
Dry
Wt.
Wt.
Dff.
Vp
(cc)
Diam
.
(cm)
Length
(cm)
C.S
Area
(cm2)
Vb
(cc)
Φ%
K
(md)
Swir
%
So%
AM1
42.89
39.72
3.17
3.002
2.245
4.08
3.96
16.16
18.56
47
0.17
0.83
AM2
44.23
41.01
3.22
3.05
2.235
4.045
3.92
15.87
19.23
140
0.21
0.89
CW1
42.18
38.59
3.59
3.399
2.25
4.03
3.976
16.023
21.2
130
0.19
0.81
CW2
42.92
39.74
3.18
3.014
2.24
4.15
3.941
16.355
19
67
0.28
0.72
MC1
40.58
36.66
3.92
3.712
2.02
4.0
3.205
12.82
28.9
113
0.22
0.78
MC2
40.37
36.95
3.42
3.238
2.22
3.905
3.87
15.11
21
87
0.30
0.7
MC3
39.93
35.23
4.7
4.517
2.24
4.03
3.94
15.87
28
272
0.19
0.81
MC4
43.59
39.50
4.09
3.88
2.32
4.1
4.22
17.30
26
169
0.31
0.69
Acid Treatment Unit
The Procedure of the Experiment

Inject mud into the core sample to damage the
core and reduce the permeability.

Calculate the pore volume of injected mud and
the damage pressure.

Inject water to displace the acid in the core and
wait to become the pressure constant.

Calculate the pore volume of injected acid amd
the water and also the treated pressure.
The Damage Permeability
Calculation
Visocisty( m ud)  1.2cp
QMC 4  1m l / min
PMC 4  127bar
K 
QL
AP
1.2 *1 / 60 * 4.1
K 
 0.0022darcy
2.32 2
 *(
) * (127/ 14.7)
2
K  2.2m d
The Stimulated Permeability
Calculation
Visocisty ( water )  1cp
QMC 4  1ml / min
PMC 4  25bar
K
QL
AP
1 *1 / 60 * 4.1
K
 0.027 darcy
2.32 2
 *(
) * (8 / 14.7)
2
K  27 md
Effect of the flow rate
 Pore
volume of acid injected.
MC2
PVI=0.3 * 3.238=0.9714
CW2
AM1
PVI=0.3 * 3.014=0.9042
PVI=0.3 * 3.002=0.9006
87
0
87
10
86
20
80
30
70
40
55
50
40
60
25
70
10
80
5
84
Core MC2
K vs. PV Injected
100
90
80
70
K (md)
PV
Mud Injection
K (md)
60
50
5
86
6
88
21
95
37
110
51
125
61
140
62
155
62
177
Acid with Water Injection
40
30
20
10
0
0
20
40
60
80
100
PV Injected
120
140
160
180
PV
67
0
67
15
65
30
56
45
45
50
33
65
24
80
15
95
7
110
2
125
2
130
5
134
17
155
22
175
Core CW2
Mud Injection
K (md)
K vs. PV Injected
80
70
60
195
31
220
32
240
32
260
K (md)
40
30
Acid with Water Injection
27
50
20
10
0
0
50
100
150
PV Injected
200
250
300
PV
47
0
47
5
44
11
36
17
28
23
19
30
12
37
8
44
Core AM1
Mud Injection
)K (md
K vs. PV Injected
50
45
40
52
2.9
60
2.9
68
4
71
8
81
12
92
15
102
19
113
21
121
21
130
30
25
20
Acid with Water Injection
5
K (md)
35
15
10
5
0
0
20
40
60
80
PV Injected
100
120
140
KD
Q (cc/min)
5
1
17.5
1.5
9.0
2
KD = (Ki – Kacid) / Kdamage
KD vs. q
20
18
16
14
KD
12
10
8
6
4
2
0
0
0.5
1
1.5
q (cc/min)
2
2.5
Effect of the rock permeability

Pore volume injected
MC3
PVI=0.3*4.517=1.355
MC4
PVI=0.3*3.88=1.164
AM1
PVI=0.3 * 3.002=0.9006
PV
47
0
47
5
44
11
36
17
28
23
19
30
12
37
8
44
Core AM1
Mud Injection
)K (md
K vs. PV Injected
50
45
40
52
2.9
60
2.9
68
4
71
8
81
12
92
15
102
19
113
21
121
21
130
30
25
20
Acid with Water Injection
5
K (md)
35
15
10
5
0
0
20
40
60
80
PV Injected
100
120
140
md)K (
PV
170
0
145
7
122
15
95
22
75
29
48
37
23
45
140
14
55
120
6
65
2
77
2
82
6
85
12
100
17
115
21
130
25
145
28
160
28
180
Mud Injection
Core MC4
K vs. PV Injected
180
Acid with Water Injection
K (md)
160
100
80
60
40
20
0
0
20
40
60
80
100
PV Injected
120
140
160
180
200
PV
270
0
250
10
215
20
185
30
150
40
115
50
85
60
50
75
15
90
3
100
3
107
6
110
12
130
18
150
24
170
30
190
36
210
36
230
Core MC3
Mud Injection
(md)K
K vs. PV Injected
300
250
Acid with Water Injection
K (md)
200
150
100
50
0
0
50
100
150
PV Injected
200
250
DK
k)md(
9.0
47
71
170
78.0
270
KD = (Ki – Kacid) / Kdamage
KD vs. K
90.0
80.0
70.0
KD
60.0
50.0
40.0
30.0
20.0
10.0
0.0
0
50
100
150
K (md)
200
250
300
Problems faced in our experiment
 High
over burden pressure needed.
 When
we stop our mud injected?