Transcript Document
MultiPurpose Detector for NICA Introduction Experimental tasks Basic Principles Simulation General view of MPD & the magnet Major Sub-Detectors: Inner Tracker Tracker RPC (TOF) ZDC Summary 18 Septembert 2007 V.Kekelidze, V-high mult. conf 1 Introduction NICA / MPD project has started to study of hot & dense strongly interacting QCD matter & search for possible manifestation of the mixed phase formation & critical endpoint in heavy ion collisions /proposed by A.N.Sisakian and A.S.Sorin / NICA / MPD is a leading LHE project in both – research program & development of basic facility in 2008-2015 it is expected that this flagship project provides: - the frontier researches in heavy ion physics - attraction of young physicists & worldwide cooperation - development of new technologies (incl. nanotechnologies) - essential extra funds 18 Septembert 2007 V.Kekelidze, V-high mult. conf 2 The new JINR facility based on the upgraded Nuclotron – heavy Ion collider with max energy SNN = 9 GeV & mean luminosity of L=1027 cm-2s-1 (for U+U collision) These investigations are relevant to understanding of the evolution of the Early Universe and formation of the neutron stars and the physics of heavy ion collisions. It will allow to study in-medium properties of hadrons and nuclear matter equation of state including a search for possible manifestation of deconfiment and/or chiral symmetry restoration phase transition & QCD critical end-point in the energy region of SNN = 3-9 GeV 18 Septembert 2007 V.Kekelidze, V-high mult. conf 3 NICA complex allocation MPD 18 Septembert 2007 V.Kekelidze, V-high mult. conf 4 The first stage of experimental tasks foresees to study the following effects (on energy & centrality scanning): Event-to event fluctuation in hadron productions (multiplicity, Pt etc.) HBT correlations indicating the space-time size of the systems involving π, K, p, Λ (possible changes close to the de-confiment point) Directed & elliptic flows for various hadrons Multi-strange hyperon production: yield & spectra (the probes of nuclear media phases) 18 Septembert 2007 V.Kekelidze, V-high mult. conf 5 Possible indication on phase transition measurements of related yields for charged kaons & pions Some enhancement is indicated in the energy region around ~ Елаб = 30 А ГэВ 18 Septembert 2007 V.Kekelidze, V-high mult. conf 6 Basic principles of experimental approach Technical solutions should be as simple as possible Detailed simulation of expected parameters & corresponding cross-checks by available data The experiment should fulfill the major requirement: physical observables must be clearly distinguished from possible apparatus effects 18 Septembert 2007 V.Kekelidze, V-high mult. conf 7 Basic principles of organization to approach At first approximation - all sub-detectors could be designed & constructed at JINR based on the existing expertise & infrastructure Major sub-detectors (tracker) have alternative design in order to provide possibility for collaborators to substitute/accomplish corresponding groups in future The first realistic draft should be ready by January 2008 The rough cost estimation should be done by that time as well 18 Septembert 2007 V.Kekelidze, V-high mult. conf 8 First stage of simulation (based on UrQMD & GEANT4 in the framework of MPD-Root shell) Au+Au collisions with total energy of 4.5+4.5 GeV/n Central interaction within b: 0 – 3 fm Minimum bias within b: 0 – 15.8 fm Collision rate at at L=1027 cm-2s-1: ~ 6 kHz 18 Septembert 2007 V.Kekelidze, V-high mult. conf 9 Collision region 18 Septembert 2007 V.Kekelidze, V-high mult. conf 10 Charged particle multiplicity central collision |η|<1, p>100 MeV/c ~ 450 18 Septembert 2007 V.Kekelidze, V-high mult. conf 11 Momentum spectrum <P>= 0.4 GeV/c all B=0 18 Septembert 2007 V.Kekelidze, V-high mult. conf 12 momentum spectra for various particles 0 18 Septembert 2007 π+ π- K+ K- 2.0 GeV/c 0 V.Kekelidze, V-high mult. conf 2.0 GeV/c 13 MPD General View 18 Septembert 2007 V.Kekelidze, V-high mult. conf 14 Basic geometry (dimensions) preliminary Defined as a compromise between: -TOF requirement -tracker resolution -magnetic field formation 18 Septembert 2007 V.Kekelidze, V-high mult. conf limited by collider optics 15 Magnet superconducting solenoidal magnet magnetic field 0.5 T cryostat inner diameter (available for the detector) ~ 1.5 m colour step 0.5 Gauss (~1 pm) - good homogeneity 18 Septembert 2007 V.Kekelidze, V-high mult. conf 16 MPD major sub-detectors Inner Tracker (IT) - silicon strip detector Barrel Tracker (BT) - Straw or TPC pseudo-rapidity region from -1 to 1 End Cap Tracker (ECT) – Straw Chambers (to define reaction plane) Resistive Plate Chamber (RPC) (to measure Time of Flight) Electromagnetic Calorimeter (ECAL) Zero Degree Calorimeter (ZDC) (for centrality definition) Beam-Beam Counters (BBC) (to define centrality & interaction point) 18 Septembert 2007 V.Kekelidze, V-high mult. conf 17 Inner Tracker Complementary detector for track precise reconstruction in the region close to the interaction piont Cylindrical geometry (4 layers) covering the interaction region ~ 50 cm along the beam axis Possible contribution to the dE/dx measurement for charged particles 18 Septembert 2007 V.Kekelidze, V-high mult. conf 18 Longitudinal view of MPD SVT Collider chamber Beams Detector module Carbon ladder 18 Septembert 2007 V.Kekelidze, V-high mult. conf 19 Transverse view of MPD SVT Number of modules 357. Number of detectors 714. Number of electronic channels 215 500 35 cm 18 Septembert 2007 V.Kekelidze, V-high mult. conf 20 Barrel & End Cap Trackers Straw detector (optional) BT major detector for charged particle track reconstruction and momentum measurement (PT component) to measure z-coordinate of the hit with acceptable occupancy -crossing straw geometry is implemented (hyperbolic shape as the whole) - each straw is segmented by 18 parts ECT the wheels with radial straws 18 Septembert 2007 to define the production plane V.Kekelidze, V-high mult. conf 21 Straw Tracker preliminary 18 Septembert 2007 V.Kekelidze, V-high mult. conf 22 Barrel Straw Tracker Table 1. BARREL STRAW-TRACKER. Diameter of straws – 4 mm. Module Rm, сm ∆R, сm Rate max, n/сm2 L straw, сm Number per straw O, Lins, spacers segments % % Number straws channels L#1 – 454 L#2 – 460 L#1 – 608 L#2 – 614 L#1 – 684 L#2 – 690 L#1 – 808 L#2 – 814 L#1 – 914 L#2 – 920 L#1 – 1068 L#2 – 1074 L#1 – 1294 L#2 – 1300 1М (φ) 30 20÷33 0,047 110 8 18 6,6 12,6 2М 40 34÷42 0,027 130 8 18 6,6 11 3М(φ) 45 43÷49 0,021 140 8 18 6,7 10,2 4М 53 50÷56 0,016 156 8 18 6,6 9,2 5М(φ) 60 58÷65 0,012 170 8 18 6,8 8,4 6М 70 66÷74 0,009 190 8 18 6,7 7,5 7М(φ) 85 78÷88 0,006 220 8 18 6,9 6,5 100 90÷108 0,004 2×150 2×4 2×10 7,1 5,1 L#1 – 1526 L#2 – 1532 61160 114 110÷120 0,003 2×160 2×4 2×10 7 4,7 L#1 – 1800 L#2 – 1800 72000 8М-1 8M-2 9M-1(φ) 9M-2(φ) Total length of straws: ~ 41 km 18 Septembert 2007 Total: V.Kekelidze, V-high mult. conf ~ 36 000 16452 21996 24732 29196 33012 38556 46692 ~ 343 796 23 EC Straw Tracker Table 2. Modules of End-Cap Straw Tracker (φ). Diameter of straws – 4 mm. Type 2 x M1 2 x M2 2 x M3 2 x M4 N of layers 6 6 6 6 L straw, mm 884 801 719 636 N straws per layer 302 274 246 217 Total: N straws per 2 modules 3624 3288 2952 2604 12 470 Number of channels 14496 13152 11808 10416 49 900 Total length of the straws ≈ 9,7 km 18 Septembert 2007 V.Kekelidze, V-high mult. conf 24 Occupancy in the straw segments at various radiuses R = 30 cm 18 Septembert 2007 R = 115 cm V.Kekelidze, V-high mult. conf 25 TPC option for the Tracker Preliminary Specification of TPC / MPD 1. Outer Radius ~120 cm 2. Inner Radius ~20 cm 3. Drift length ~120 cm 4. Number of sectors 12 (from each side) 5. Total number of readout chambers 24 (12 from each side) 6. Drift time ~ 20-30 µsec 7. Multiplicity (central collision) ~ 500 8. Total pad /channels number ~ 70.000 9. ∆E/dX resolution ~ 6% (50 samples x 2 cm) 10. Spatial resolution ~ σz ~3 mm, σx ~ 0,4 mm, σy ~ 3 mm 11. Maximal rate ~ 5 -10 kHz ( Lum. 10^27 ) 18 Septembert 2007 V.Kekelidze, V-high mult. conf 26 Time of Flight the major detector for particle identification separation should be provided for pion / kaon in the momentum range 0-1,5 GeV/c for proton / kaon in the momentum range 0-2,5 GeV/c 2 stations of scintillation counters situated symmetrically from the interaction region near the beam pipe give the start signal RPC detectors on the radius 1,3 m provides the TOF measurement in addition RPS provides targeting for track reconstruction in BT 18 Septembert 2007 V.Kekelidze, V-high mult. conf 27 Proposed parameters Radius from the beam line - 1,3 m Time resolution -100 ps Max momentum of π/K system separated better than 2,5 σ at 1,3GeV/c Efficiency (acceptance) for π/K – better than 97% 18 Septembert 2007 V.Kekelidze, V-high mult. conf 28 Configuration the RPC TOF system looks like barrel with the length 4 m and radius of 1,3 m . the barrel surface is about 33 m2 the dimensions of one RPC counter is 7 cm x 100 cm it has 150 pads with size 2,3cm x 2 cm. the full barrel is covered by 160 counters the total number of readout channels is 24000 18 Septembert 2007 V.Kekelidze, V-high mult. conf 29 18 Septembert 2007 V.Kekelidze, V-high mult. conf 30 18 Septembert 2007 V.Kekelidze, V-high mult. conf 31 18 Septembert 2007 V.Kekelidze, V-high mult. conf 32 18 Septembert 2007 V.Kekelidze, V-high mult. conf 33 TOF RPC design Honeycomb width = 12 cm Total active area width = 11.2 cm Strip width = 3 cm Strip interval = 0.3 cm Readout strip thickness = 0.5 mm PCB thickness = 1.5 mm Outer glass = 1.1 mm Inner glass = 0.55 mm Gas gap = 0.23 mm carbon tape = 0.9 mm Mylar thickness = 0.25 mm Honeycomb thickness = 9.5 mm Inner glass width = 11.2 cm Outer glass width = 11.5 cm PCB width = 13 cm PCB length = 52.8 cm Outer glass length = 47.4 cm Strip length = 47 cm Honeycomb = 48 cm Inner glass length = 47 cm 18 Septembert 2007 V.Kekelidze, V-high mult. conf 34 18 Septembert 2007 V.Kekelidze, V-high mult. conf 35 Separation for Central events 18 Septembert 2007 V.Kekelidze, V-high mult. conf 36 Separation for Central events π+ p K+ 18 Septembert 2007 V.Kekelidze, V-high mult. conf 37 Electromagnetic Calorimeter absorber / scintillator sandwich with MAPD readout In progress 18 Septembert 2007 V.Kekelidze, V-high mult. conf 38 Zero Degree Calorimeter measurement of centrality: b~ A - Nspect selection of centrality at trigger level measurement of event-by-event fluctuations to exclude the fluctuation of participants monitor of beam intensity by detecting the neutrons from electromagnetic dissociation εe / εh = 1 - compensated calorimeter Lead / Scintillator sandwich 18 Septembert 2007 V.Kekelidze, V-high mult. conf 39 Schematic view of ZDC configuration spectator spots at Z=3 m Eau=4.5 AGeV Optional Very peripheral collision Detection of neutrons. (4 modules) Beam hole X Full beam intensity. Minimum 16 modules. Z 18 Septembert 2007 V.Kekelidze, V-high mult. conf 40 Summary The works on MPD design have been started high activity of many experts New ideas & suggestions are under consideration still Full simulation and event reconstruction works are in progress The configurations for TPC & Ecal will be proposed soon The major milestones are fixed the Letter of Intend to be ready by January 2008 18 Septembert 2007 V.Kekelidze, V-high mult. conf 41 Thanks to the working group NICA center group: Afanasiev S.V. Nikitin V.A. Borisov V.V. Peshekhonov V.D. Pavlyuk A.V. Golovatyuk V.M. Kurepin A.B. 18 Septembert 2007 + volunteers Shabunov A.V. Potrebenikov YU.K. Zanevskij Yu.V. Kiryushin Yu.T. Murin Yu.A. Tyapkin I.A. Arkhipkin D. Abramyan H. Avdejchikov V.V. …… . ….. V.Kekelidze, V-high mult. conf 42 Spare 18 Septembert 2007 V.Kekelidze, V-high mult. conf 43 Key experiments to understand the fundamental nature of matter Основные этапы и организация работ Основные этапы: I этап: 2007 – 2008 гг. - Развитие Нуклотрона - подготовка Технического проекта NICA - начало испытаний прoтотипов элементов MPD и NICA II этап: 2008 – 2012 гг. - Разработка и создание Бустера нуклотрона - Разработка и создание коллайдера NICA и установки MPD 2010 – 2013 гг. - монтаж коллайдера и установки MPD III этап: IV этап: 2013 г. - наладка и запуск 18 Septembert 2007 V.Kekelidze, V-high mult. conf 44 Key experiments to understand the fundamental nature of matter Срочные работы первого этапа: Требуется показать реализуемость проекта, для чего необходимо: Определить и апробировать составляющие субпроекты; наметить график подготовки полномасштабного технического проекта (TDR) Определить основных исполнителей и начать формирование Международной Коллаборации для его реализации Уточнить временную шкалу реализации проекта и его стоимость; возможные источники финансирования 18 Septembert 2007 V.Kekelidze, V-high mult. conf 45 Key experiments to understand the fundamental nature of matter Инициативный (координационный) комитет • • • • • • • • Организован в 2006: А.Н.Сисакян А.С.Сорин В.Д.Тонеев А.Д.Коваленко И.Н.Мешков А.И.Малахов С.В.Афанасьев В.А.Никитин Проводятся регулярные совещания; проведен ряд расширенных совещаний (в т.ч. «Круглый стол» с привлечением внешних экспертов) 18 Septembert 2007 V.Kekelidze, V-high mult. conf 46 Tracker (Barrel Straw Tracker) preliminary 5 Modules: 1-st, 3-th, 5-th – φ (2; 2; 4 layers); 2-d, 4-th - ± 7o ( 3; 3 layers) L -2,4 m; R - from 20 cm to 120 cm 4 mm in diameter straws – 12 610; 18 Septembert 2007 V.Kekelidze, V-high mult. conf 47 Tracker (Barrel Straw Tracker) continuation 4 mm in diameter segmented straws, L -2,4 m: – 12 610 pc Segmentation of 1-st and 2-d modules: 20 cm 60 cm 40 cm Total: 61860 channels Segmentation of 3-th, 4-th and 5-th modules: 60 cm 18 Septembert 2007 60 cm V.Kekelidze, V-high mult. conf 48