Transcript Document

MultiPurpose Detector
for NICA






Introduction
Experimental tasks
Basic Principles
Simulation
General view of MPD & the magnet
Major Sub-Detectors:
Inner Tracker
Tracker
RPC (TOF)
ZDC
 Summary
18 Septembert 2007
V.Kekelidze, V-high mult. conf
1
Introduction
 NICA / MPD project has started
to study of hot & dense strongly interacting QCD matter
& search for possible manifestation of the mixed phase formation &
critical endpoint in heavy ion collisions
/proposed by A.N.Sisakian and A.S.Sorin /
 NICA / MPD is a leading LHE project in both
– research program & development of basic facility
in 2008-2015
 it is expected that this flagship project provides:
- the frontier researches in heavy ion physics
- attraction of young physicists & worldwide cooperation
- development of new technologies (incl. nanotechnologies)
- essential extra funds
18 Septembert 2007
V.Kekelidze, V-high mult. conf
2
The new JINR facility based on the upgraded Nuclotron
– heavy Ion collider with max energy SNN = 9 GeV
& mean luminosity of L=1027 cm-2s-1 (for U+U collision)
These investigations are relevant to understanding of the
evolution of the Early Universe and formation of the neutron
stars and the physics of heavy ion collisions.
It will allow to study in-medium properties of hadrons and
nuclear matter equation of state including a search for possible
manifestation of deconfiment and/or chiral symmetry restoration
phase transition & QCD critical end-point
in the energy region of SNN = 3-9 GeV
18 Septembert 2007
V.Kekelidze, V-high mult. conf
3
NICA complex allocation
MPD
18 Septembert 2007
V.Kekelidze, V-high mult. conf
4
The first stage of experimental tasks
foresees to study the following effects
(on energy & centrality scanning):
Event-to event fluctuation in hadron productions
(multiplicity, Pt etc.)
 HBT correlations indicating the space-time size of the
systems involving π, K, p, Λ
(possible changes close to the de-confiment point)
Directed & elliptic flows for various hadrons
 Multi-strange hyperon production:
yield & spectra (the probes of nuclear media phases)
18 Septembert 2007
V.Kekelidze, V-high mult. conf
5
Possible indication on phase transition
measurements of related yields
for charged kaons & pions
Some enhancement is
indicated in the energy region
around
~ Елаб = 30 А ГэВ
18 Septembert 2007
V.Kekelidze, V-high mult. conf
6
Basic principles
of experimental approach
Technical solutions should be as simple as possible
 Detailed simulation of expected parameters
& corresponding cross-checks by available data
The experiment should fulfill the major requirement:
physical observables must be clearly distinguished
from possible apparatus effects
18 Septembert 2007
V.Kekelidze, V-high mult. conf
7
Basic principles
of organization to approach
 At first approximation
- all sub-detectors could be designed & constructed at JINR
based on the existing expertise & infrastructure
 Major sub-detectors (tracker) have alternative design
in order to provide possibility for collaborators to
substitute/accomplish corresponding groups in future
 The first realistic draft should be ready by January 2008
The rough cost estimation should be done
by that time as well
18 Septembert 2007
V.Kekelidze, V-high mult. conf
8
First stage of simulation
(based on UrQMD & GEANT4
in the framework of MPD-Root shell)
 Au+Au collisions with total energy of 4.5+4.5 GeV/n
 Central interaction within b: 0 – 3 fm
 Minimum bias within b: 0 – 15.8 fm
 Collision rate at at L=1027 cm-2s-1: ~ 6 kHz
18 Septembert 2007
V.Kekelidze, V-high mult. conf
9
Collision region
18 Septembert 2007
V.Kekelidze, V-high mult. conf
10
Charged particle multiplicity
central collision |η|<1, p>100 MeV/c
~ 450
18 Septembert 2007
V.Kekelidze, V-high mult. conf
11
Momentum spectrum
<P>= 0.4 GeV/c
all
B=0
18 Septembert 2007
V.Kekelidze, V-high mult. conf
12
momentum spectra
for various particles
0
18 Septembert 2007
π+
π-
K+
K-
2.0 GeV/c
0
V.Kekelidze, V-high mult. conf
2.0 GeV/c
13
MPD General View
18 Septembert 2007
V.Kekelidze, V-high mult. conf
14
Basic geometry (dimensions) preliminary
Defined as a compromise between:
-TOF requirement
-tracker resolution
-magnetic field formation
18 Septembert 2007
V.Kekelidze, V-high mult. conf
limited by
collider optics
15
Magnet
 superconducting solenoidal magnet
 magnetic field 0.5 T
 cryostat inner diameter (available for the detector) ~ 1.5 m
 colour step 0.5 Gauss (~1 pm)
- good homogeneity
18 Septembert 2007
V.Kekelidze, V-high mult. conf
16
MPD major sub-detectors
 Inner Tracker (IT) - silicon strip detector
 Barrel Tracker (BT) - Straw or TPC
pseudo-rapidity region from -1 to 1
 End Cap Tracker (ECT) – Straw Chambers
(to define reaction plane)
 Resistive Plate Chamber (RPC)
(to measure Time of Flight)
 Electromagnetic Calorimeter (ECAL)
 Zero Degree Calorimeter (ZDC)
(for centrality definition)
 Beam-Beam Counters (BBC)
(to define centrality & interaction point)
18 Septembert 2007
V.Kekelidze, V-high mult. conf
17
Inner Tracker
Complementary detector for track precise reconstruction in
the region close to the interaction piont
Cylindrical geometry (4 layers)
covering the interaction region ~ 50 cm along the beam axis
Possible contribution to the dE/dx measurement
for charged particles
18 Septembert 2007
V.Kekelidze, V-high mult. conf
18
Longitudinal view of MPD SVT
Collider
chamber
Beams
Detector
module
Carbon ladder
18 Septembert 2007
V.Kekelidze, V-high mult. conf
19
Transverse view of MPD SVT
Number of modules 357.
Number of detectors 714.
Number of electronic
channels
215 500
35 cm
18 Septembert 2007
V.Kekelidze, V-high mult. conf
20
Barrel & End Cap Trackers
Straw detector (optional)
BT

major detector for charged particle track reconstruction
and momentum measurement (PT component)
 to measure z-coordinate of the hit with acceptable occupancy
-crossing straw geometry is implemented
(hyperbolic shape as the whole)
- each straw is segmented by 18 parts
ECT
 the wheels with radial straws
18 Septembert 2007
to define the production plane
V.Kekelidze, V-high mult. conf
21
Straw Tracker
preliminary
18 Septembert 2007
V.Kekelidze, V-high mult. conf
22
Barrel Straw Tracker
Table 1. BARREL STRAW-TRACKER. Diameter of straws – 4 mm.
Module
Rm, сm
∆R, сm
Rate max,
n/сm2
L straw, сm
Number per straw
O,
Lins,
spacers
segments
%
%
Number
straws
channels
L#1 – 454
L#2 – 460
L#1 – 608
L#2 – 614
L#1 – 684
L#2 – 690
L#1 – 808
L#2 – 814
L#1 – 914
L#2 – 920
L#1 – 1068
L#2 – 1074
L#1 – 1294
L#2 – 1300
1М (φ)
30
20÷33
0,047
110
8
18
6,6
12,6
2М
40
34÷42
0,027
130
8
18
6,6
11
3М(φ)
45
43÷49
0,021
140
8
18
6,7
10,2
4М
53
50÷56
0,016
156
8
18
6,6
9,2
5М(φ)
60
58÷65
0,012
170
8
18
6,8
8,4
6М
70
66÷74
0,009
190
8
18
6,7
7,5
7М(φ)
85
78÷88
0,006
220
8
18
6,9
6,5
100
90÷108
0,004
2×150
2×4
2×10
7,1
5,1
L#1 – 1526
L#2 – 1532
61160
114
110÷120
0,003
2×160
2×4
2×10
7
4,7
L#1 – 1800
L#2 – 1800
72000
8М-1
8M-2
9M-1(φ)
9M-2(φ)
Total length of straws: ~ 41 km
18 Septembert 2007
Total:
V.Kekelidze, V-high mult. conf
~ 36 000
16452
21996
24732
29196
33012
38556
46692
~ 343 796
23
EC Straw Tracker
Table 2.
Modules of End-Cap Straw Tracker (φ). Diameter of straws – 4
mm.
Type
2 x M1
2 x M2
2 x M3
2 x M4
N of
layers
6
6
6
6
L straw,
mm
884
801
719
636
N straws
per layer
302
274
246
217
Total:
N straws per 2
modules
3624
3288
2952
2604
12 470
Number of
channels
14496
13152
11808
10416
49 900
Total length of the straws ≈ 9,7 km
18 Septembert 2007
V.Kekelidze, V-high mult. conf
24
Occupancy in the straw segments
at various radiuses
R = 30 cm
18 Septembert 2007
R = 115 cm
V.Kekelidze, V-high mult. conf
25
TPC option for the Tracker
Preliminary
Specification of TPC / MPD
1. Outer Radius
~120 cm
2. Inner Radius
~20 cm
3. Drift length
~120 cm
4. Number of sectors
12 (from each side)
5. Total number of readout chambers
24 (12 from each side)
6. Drift time
~ 20-30 µsec
7. Multiplicity (central collision)
~ 500
8. Total pad /channels number
~ 70.000
9. ∆E/dX resolution
~ 6% (50 samples x 2 cm)
10. Spatial resolution
~ σz ~3 mm, σx ~ 0,4 mm, σy ~ 3 mm
11. Maximal rate
~ 5 -10 kHz ( Lum. 10^27 )
18 Septembert 2007
V.Kekelidze, V-high mult. conf
26
Time of Flight
 the major detector for particle identification
 separation should be provided
for pion / kaon in the momentum range 0-1,5 GeV/c
for proton / kaon in the momentum range 0-2,5 GeV/c
 2 stations of scintillation counters situated symmetrically from the
interaction region near the beam pipe give the start signal
 RPC detectors on the radius 1,3 m provides the TOF measurement
 in addition RPS provides targeting for track reconstruction in BT
18 Septembert 2007
V.Kekelidze, V-high mult. conf
27
Proposed parameters
 Radius from the beam line - 1,3 m
 Time resolution
-100 ps
 Max momentum of π/K system separated
better than 2,5 σ at 1,3GeV/c

Efficiency (acceptance) for π/K – better than 97%
18 Septembert 2007
V.Kekelidze, V-high mult. conf
28
Configuration
 the RPC TOF system looks like barrel
with the length 4 m and radius of 1,3 m
.
 the barrel surface is about 33 m2
 the dimensions of one RPC counter is 7 cm x 100 cm
it has 150 pads with size 2,3cm x 2 cm.
 the full barrel is covered by 160 counters
 the total number of readout channels is 24000
18 Septembert 2007
V.Kekelidze, V-high mult. conf
29
18 Septembert 2007
V.Kekelidze, V-high mult. conf
30
18 Septembert 2007
V.Kekelidze, V-high mult. conf
31
18 Septembert 2007
V.Kekelidze, V-high mult. conf
32
18 Septembert 2007
V.Kekelidze, V-high mult. conf
33
TOF RPC design
Honeycomb width = 12 cm
Total active area width = 11.2 cm
Strip width = 3 cm
Strip interval = 0.3 cm
Readout strip thickness = 0.5 mm
PCB thickness
= 1.5 mm
Outer glass = 1.1 mm
Inner glass = 0.55 mm
Gas gap
= 0.23 mm
carbon tape = 0.9 mm
Mylar thickness
= 0.25 mm
Honeycomb thickness = 9.5 mm
Inner glass width = 11.2 cm
Outer glass width = 11.5 cm
PCB width = 13 cm
PCB length = 52.8 cm
Outer glass length = 47.4 cm
Strip length = 47 cm
Honeycomb = 48 cm
Inner glass length = 47 cm
18 Septembert 2007
V.Kekelidze, V-high mult. conf
34
18 Septembert 2007
V.Kekelidze, V-high mult. conf
35
Separation for Central events
18 Septembert 2007
V.Kekelidze, V-high mult. conf
36
Separation for Central events
π+
p
K+
18 Septembert 2007
V.Kekelidze, V-high mult. conf
37
Electromagnetic Calorimeter
 absorber / scintillator sandwich with MAPD readout
In progress
18 Septembert 2007
V.Kekelidze, V-high mult. conf
38
Zero Degree Calorimeter
 measurement of centrality: b~ A - Nspect
selection of centrality at trigger level
 measurement of event-by-event fluctuations
to exclude the fluctuation of participants
monitor of beam intensity by detecting
the neutrons from electromagnetic dissociation

εe / εh
= 1 - compensated calorimeter
 Lead / Scintillator sandwich
18 Septembert 2007
V.Kekelidze, V-high mult. conf
39
Schematic view of ZDC configuration
spectator spots at
Z=3 m Eau=4.5 AGeV
Optional
Very peripheral
collision
Detection
of neutrons.
(4 modules)
Beam hole
X
Full beam intensity.
Minimum 16 modules.
Z
18 Septembert 2007
V.Kekelidze, V-high mult. conf
40
Summary
 The works on MPD design have been started
high activity of many experts
 New ideas & suggestions are under consideration still
 Full simulation and event reconstruction works
are in progress
 The configurations for TPC & Ecal
will be proposed soon
The major milestones are fixed
the Letter of Intend to be ready by January 2008
18 Septembert 2007
V.Kekelidze, V-high mult. conf
41
Thanks to the working group
NICA center group:
Afanasiev S.V.
Nikitin V.A.
Borisov V.V.
Peshekhonov V.D.
Pavlyuk A.V.
Golovatyuk V.M.
Kurepin A.B.
18 Septembert 2007
+ volunteers
Shabunov A.V.
Potrebenikov YU.K.
Zanevskij Yu.V.
Kiryushin Yu.T.
Murin Yu.A.
Tyapkin I.A.
Arkhipkin D.
Abramyan H.
Avdejchikov V.V.
……
.
…..
V.Kekelidze, V-high mult. conf
42
Spare
18 Septembert 2007
V.Kekelidze, V-high mult. conf
43
Key experiments to understand the fundamental nature of matter
Основные этапы и организация работ
Основные этапы:
I этап:
2007 – 2008 гг.
- Развитие Нуклотрона
- подготовка Технического проекта NICA
- начало испытаний прoтотипов элементов
MPD и NICA
II этап:
2008 – 2012 гг.
- Разработка и создание Бустера нуклотрона
- Разработка и создание коллайдера NICA
и установки MPD
2010 – 2013 гг.
- монтаж коллайдера и установки MPD
III этап:
IV этап:
2013 г.
- наладка и запуск
18 Septembert 2007
V.Kekelidze, V-high mult. conf
44
Key experiments to understand the fundamental nature of matter
Срочные работы первого этапа:
Требуется показать реализуемость проекта, для чего
необходимо:
 Определить и апробировать составляющие субпроекты;
наметить график подготовки полномасштабного
технического проекта (TDR)
 Определить основных исполнителей и начать
формирование Международной Коллаборации для его
реализации
 Уточнить временную шкалу реализации проекта и его
стоимость; возможные источники финансирования
18 Septembert 2007
V.Kekelidze, V-high mult. conf
45
Key experiments to understand the fundamental nature of matter
Инициативный (координационный) комитет
•
•
•
•
•
•
•
•
Организован в 2006:
А.Н.Сисакян
А.С.Сорин
В.Д.Тонеев
А.Д.Коваленко
И.Н.Мешков
А.И.Малахов
С.В.Афанасьев
В.А.Никитин
Проводятся регулярные совещания; проведен ряд
расширенных совещаний (в т.ч. «Круглый стол» с
привлечением внешних экспертов)
18 Septembert 2007
V.Kekelidze, V-high mult. conf
46
Tracker (Barrel Straw Tracker)
preliminary
5 Modules: 1-st, 3-th, 5-th – φ (2; 2; 4 layers); 2-d, 4-th - ± 7o ( 3; 3 layers)
L -2,4 m; R - from 20 cm to 120 cm
4 mm in diameter straws – 12 610;
18 Septembert 2007
V.Kekelidze, V-high mult. conf
47
Tracker (Barrel Straw Tracker)
continuation
4 mm in diameter segmented straws, L -2,4 m: – 12 610 pc
Segmentation of 1-st and 2-d modules:
20 cm
60 cm
40 cm
Total: 61860 channels
Segmentation of 3-th, 4-th and 5-th modules:
60
cm
18 Septembert 2007
60
cm
V.Kekelidze, V-high mult. conf
48