Transcript Document
T0 Electronics Production Readiness Review W.H.Trzaska on behalf of T0 team HIP, Department of Physics University of Jyväskylä, Finland W.H.Trzaska T0 PRR, February 10, 2006 1 Outline • • • • • • • • • • • • Introduction Shoebox amplifier, CFD (Jyväskylä) VDL (MEPhI) OR (MEPhI) Mean Timer (MEPhI) TVDC (KI; ?) MPD (KI; ?) FAN-OUT (KI; ?) QTC (INR; Tatiana Karavicheva) T0TU (INR; Tatiana Karavicheva) NIMLVDS (INR; Tatiana Karavicheva) Cabling, HV, LV, DCS (Tomasz Malkiewicz) W.H.Trzaska T0 PRR, February 10, 2006 2 T0-C W.H.Trzaska T0 PRR, February 10, 2006 3 T0-A Distance to IP 3907mm 3853mm 3746mm T0-A W.H.Trzaska T0 PRR, February 10, 2006 4 T0 electronics layout 24 PMT Analog signals Shoe-box Analog signals to TRD Analog signals X 2 L1 - L2a - L2r Fast Electronics TTCrx Busy FE data TRM TRM Readout data VME DRM SIU Trigger signals to CTP W.H.Trzaska ALICE Trigger ALICE DCS DDL ALICE DAQ ALICE DCS T0 PRR, February 10, 2006 5 Full chain readout test November 2005 • T0 time and amplitude digitized and stored with the latest version of TOF hardware (HPTDC) • HV and laser attenuator under DCS • CFD DCS prototype tested • Next round of “full chain” tests scheduled: – Jan 06 Moscow – Feb 06 Jyväskylä – Mar 06 CERN W.H.Trzaska T0 PRR, February 10, 2006 6 Time resolution of a single PMT channel At high multiplicities the final T0 resolution will be considerably better than that of a single PMT T0/V0 Shoebox works very well! W.H.Trzaska 50 Sigma of time resolution (ps) Results from November 2005 full-chain readout test at CERN Direct output 10x amplified 40 30 20 10 0 0.1 1.0 10.0 100.0 Amplitude (MIP) T0 PRR, February 10, 2006 7 Shoebox for T0 and V0 • T0 and V0 must provide TRD wake-up • Wake-up must be generated inside L3 • Need for a box with electronics – Jyväskylä part to split & amplify pulses 3 mV – 3 V; 0.6 – 600 pC (V.Lyapin) – Heidelberg part to duplicate trigger logic for TRD (K. Oyama) 24 PMT Shoe-box TTCrx Fast Electronics FE data TRM TRM TRM Readout data VME DRM SIU W.H.Trzaska T0 PRR, February 10, 2006 8 T0/V0 amplifier Internal Clamping V.Lyapin Va Input + - V b + - 11.01.06 G=1 G = 10 20 Ohm + G = 10 1600 1400 Vb, mV 1200 1000 BFQ81 BFR92 BFT92 BFT93 MMBD1703 BFR520 800 600 400 200 = 0 0 W.H.Trzaska 1000 2000 3000 4000 Va, T0mV PRR, February 10, 2006 5000 9 Clamping has no significant effect on the performance of the amplifier 50 100 45 90 Direct channel without clamping Direct channel with clamping 80 40 Direct channel without clamping 70 Direct channel with clamping 60 30 Walk (ps) Resolution (ps) 35 25 50 20 40 15 30 10 20 5 10 0 0 1 10 100 1 100 Amplitude (MIP) Amplitude (MIP) W.H.Trzaska 10 T0 PRR, February 10, 2006 10 Radiation test at Jyväskylä in August 2005 W.H.Trzaska T0 PRR, February 10, 2006 11 LDO Voltage Regulator UCC284DP-5 (Texas Instrument) Broken at ~100 krad exposure 20 120 Current (mV) Gain Current +6V Current -6V 100 15 10 5 80 60 40 20 0 0 W.H.Trzaska 50 100 Dose (krad) 150 0 T0 PRR, February 10, 2006 0 50 100 Dose (krad) 150 12 TRDP FEB T0-A/C, V0-A/C-[0..3] 2 x 12 (T0) + 2 x 32 (V0) = 88 88 + 22 spares = 120 total W.H.Trzaska T0 PRR, February 10, 2006 13 Main features • Based on ultra-wideband current-feedback operational amplifier OPA695 – max output current 100 mA, 4300V/usec slew rate – >450MHz bandwidth at higher gains (G = +8) . • • • • • • • Size – 55 x 55 x 15 mm Power supply +6 V 0.1A and – 6V 0.1 A Max power consumption 1.2 W Input – SMA connector, 50 Ohm impedance Output 1 – SMA connector gain 1 (“direct output”) Output 2 – SMA connector, gain 10 Output 3 – 2 pins, differential level analog signal with gain 10 to TRD discriminator W.H.Trzaska T0 PRR, February 10, 2006 14 Shoebox amplifier cost estimate € Component name 120 units per Ampl. subTotal number of units to be made OPA695 1.10 2 264 UCC284 2.80 1 336 THS4503I 4.00 1 480 TPS7350 1.00 1 120 Resistors 0.04 26 125 Capacitors 0.20 14 336 Electrolytic capac. 4.10 8 3 936 Trimmers 2.10 3 756 BFR520 0.31 1 37 RClamp0502B 0.28 1 34 SMA connectors 8.20 3 2 952 Soldering 15.00 1 1 800 PCB production 35.00 1 4 200 Total [€] 15 376 W.H.Trzaska T0 PRR, February 10, 2006 15 Component costs (ampl.) € units per Ampl. subTotal OPA695 1.10 3 396 UCC284 2.80 1 336 TPS7350 1.00 1 120 Resistors 0.04 26 125 Capacitors 0.20 14 336 Electrolytic capac. 4.10 8 3,936 Trimmers 2.10 3 756 SMA connectors 8.20 3 2,952 Soldering 15.00 1 1,800 PCB production 35.00 1 4,200 Total [€] 14,957 Component name 120 W.H.Trzaska T0 PRR, February 10, 2006 16 CLK Distribution From Shoeboxes 1 ... ... Cable Delay Cable Delay 1 12 13 to TRMs to NIM units CLK 14 MPD MPD R 24 12 CLK 24 Side C 13 13 1 CLK ... NIM LVDS Analog NIM CLK ... LVDS->NIM Side A FAN From Shoeboxes CPDM 12 24 BC Delay 1-12 CFD 1-12 (A) (C) Mean Timer CAN BUS QTC 1-12 1 12 OR (C) (A) CLK NIM->LVDS CLK TVDC CLK CLK TRMs CLK TRMs (A) QTC NIM->LVDS NIM->LVDS CLK (C) CLK T0 Trigger Unit CLK TRMs T0v T0A T0msc T0mc T0C to C T P TRM VME Bus DCS 24 PMT VME Bus DAQ Shoebox TTCrx Fast Electronics FE data TRM TRM TRM Readout data VME DRM T0 fast electronics SIU W.H.Trzaska T0 PRR, February 10, 2006 17 Canberra CFD – 6 or 12 needed @ 3 k€ per unit ADDER DISCRIMINATOR ZERO SHAPER NIM OUTPUT ECL-NIM ANALOG INPUT DISCRIMINATOR CLK U0 W.H.Trzaska T0 PRR, February 10, 2006 18 Necessary modifications to CFD (to control Threshold & Walk via DCS) • Installing SMC sockets • Changing 2 resistors per channel – Changing settings by external voltages instead of a build-in potentiometer • Tested and works well W.H.Trzaska T0 PRR, February 10, 2006 19 Canberra CFD 454 modification Before After -5V 10 kOhm + 100 Ohm 10 kOhm To Threshold comparator 1 kOhm 100 Ohm 1 kOhm To Threshold comparator 10 kOhm 10 kOhm 10 kOhm 1 kOhm 1 kOhm Check point W.H.Trzaska -5V Threshold SMC connector Threshold + T0 PRR, February 10, 2006 20 Canberra 454 CFD Features • Four CF discriminators in a single-width NIM • 200 MHz count rate capability • 1000:1 dynamic range • Typical walk <±30 ps for 100:1 dynamic range • Selectable fraction or leading edge operation • Output indicator LED • 6 units needed if only one output per PMT is used • 12 units if also the non-amplified will be used • 3 000 € per unit (price in Finland with 0% VAT) How to purchase electronics? W.H.Trzaska T0 PRR, February 10, 2006 21 Variable Delay Line (VDL) Parameters: 1 NIM ECL Register Delay IN 4 NIM ECL ECL MC10EP195 Code 10 bit OUT ECL MC10EP195 Register Delay 1 NIM NIM 4 Number of independent delay channels in the single unit: 4. Standard of input and output signals: NIM. Signal plug: SMC. Step of delay tuning: 10 ps. Range of delay tuning: 10 ns. Control code: 10 bits. Code 10 bit The programmable delay unit is intended mainly for equalizing the signal delays at the individual channels of PMT before their delivery to the ORA and ORC circuits. Moreover, the VDL can be used for the choice of initial delay of TM and TVDC units, and it can be used in all other cases for precise remote tuning of delay. W.H.Trzaska T0 PRR, February 10, 2006 22 VDL prototype (24 units needed) W.H.Trzaska T0 PRR, February 10, 2006 23 Test results of VDL unit Delay line calibration data.Unity step of the code corresponds to 10 ps 1000 900 800 TDC CHANNEL NUMBER 700 600 500 400 300 200 100 0 0 200 400 600 800 1000 1200 CODE NUMBER W.H.Trzaska T0 PRR, February 10, 2006 24 Second VDL prototype in VME standard (24 channels needed) W.H.Trzaska T0 PRR, February 10, 2006 25 Main features • • • • • • Based on MC100EP195 4 independent channels VME standard 6U (233 x 160) Power supply – +5V, +12V Dissipated power – 8 W 4 inputs (1 per 1 channel),NIM standard, LEMO connectors • 4 outputs per channel, NIM standard, LEMO connectors W.H.Trzaska T0 PRR, February 10, 2006 26 Component costs( 8 units = 6 main + 2spare) • • • • • • • • • • item cost USD units per mod. Integrated circuits 32 Resistors 0.04 65 Capacitors 0.2 32 LEMO connectors (single) 4.6 4 LEMO connectors (double) 19 8 Soldering 66 1 PCB production 160 + 40 1 Mech.unit + L.V.connector 50 1 Spare ICs 200 32 TOTAL W.H.Trzaska subtotal 2000 21 50 148 1216 528 400 400 200 4963 USD T0 PRR, February 10, 2006 27 Logical Unit “OR” (two needed) Parameters: Gate 2 Gate . . . . . . Input signals 1 & UV2 F 12 Gate & CLK OR & NIM UV1 12 bit Input signals are in NIM standard with the 10 ns duration; Output signals are in NIM standards; Jitter of the output signal is not more then 25 ps; The unit is controlled by the 12-bit code. RG The logic unit is intended for generation of common signal TOA (or TOC) using the signal from 12 CFD units (constant fraction discriminators). Moreover, the logic unit provides the possibility for precise tuning of delays in each PMT-CFD channel by remote commutation of channels. The time gating can be also provided with the use of CLK signal. W.H.Trzaska T0 PRR, February 10, 2006 28 OR prototype in CAMAC BC (clock) Input 1 Input 2 Gat e puls eSwitch on\out & Gate & Gat e Input 12 & OR Output (NIM pulses) Gat e Decod er VME bus W.H.Trzaska T0 PRR, February 10, 2006 29 Measured characteristics of the module “OR” 700 B Linear Fit of Data1_B Output delay, [ch] 650 600 550 500 0 100 200 300 400 500 Input delay, [ch] W.H.Trzaska T0 PRR, February 10, 2006 30 Logic module “OR” • 12 inputs for timing signals from 12 CFDs + delay • Generates timing and logic signals synchronized to the first input signal within a 10 ps precision. • Any input channel can be switched off by corresponding command coming via VME bus (in case of problems). • STATUS of the module: – First prototype tested, non-satisfactory results – large pick-ups – New 4-layer PCB ready for production – Completion of production of the second prototype expected in May 2006 W.H.Trzaska T0 PRR, February 10, 2006 31 Main features of the module “OR” • • • • • Based on ICs MC100EL31 Dimensions – VME 6U (233 x 160) Power supply - +5V,+12V,-5V,-2V Dissipated power – 20 W 13 inputs in NIM standard (LEMO connectors) • 5 outputs in NIM standard (LEMO connectors) W.H.Trzaska T0 PRR, February 10, 2006 32 Component costs (2 modules + 1 spare) item cost USD units per mod. Integrated circuits 44 Transistors 1 36 Resistors 0.04 258 Capacitors 0.2 135 DIN64 connector 1.5 1 LEMO connectors (single) 4.6 18 Soldering 60 1 PCB production 1000 1 Mech.unit + LV connectors 50 1 Spare parts 30 200 subtotal 1545 108 33 81 4.5 250 180 1500 150 TOTAL 4051.5 W.H.Trzaska T0 PRR, February 10, 2006 33 Mean Timer Principle of operation Center of gravity on the time axis of two signals T0A and T0C in case of a fixed distance between two arrays of detectors (T0A + T0C )/2 is independent of the position of the vertex W.H.Trzaska T0 PRR, February 10, 2006 34 Mean Timer Input signals are in NIM standards of 10 ns duration; Output signals are in NIM standard; Jitter of the output signal is not more then 20 ps; The accuracy of timing (time binding to the middle point of time interval ranging within 3 ns) is < 20 ps. In 1 UV 1 Sw 1 Sw 2 Current Generator F NIM Comparator In 2 W.H.Trzaska UV 2 C 10...100 pF T0 PRR, February 10, 2006 35 Mean timer 1st prototype • Generates precision interaction time that does not depend on vertex position – On-line check of T0 performance In1 +V Io Io 15 mA NIM/PECL Driver 15 mA Fast Switch Fast Switch NIM/PECL Driver In2 C 12 pF Fast comparator W.H.Trzaska T0 PRR, February 10, 2006 ECL/NIM Driver 36 Out Test results of Mean Timer prototype (CERN, June 2003) T0 Mean Timer 500 300 PMT1 Time Shift [ps] PMT2 Mean Timer 100 Expected -100 -300 -500 0 W.H.Trzaska 5 10 Distance T0Relative PRR, February 10,from 2006Vertex [cm] 15 37 Test results of the second prototype (with generator, December 2004) Some small changes in the printed board layout of the Mean Timer are made for the final design. W.H.Trzaska T0 PRR, February 10, 2006 38 Main features • • • • • • Based on ICs – MC10EL Dimensions – NIM standard Two units in one module (one spare) Power supply – +5V, -5V,+12V Dissipated power – 1.2 W 2 inputs in NIM standard, LEMO connectors • 2 outputs in NIM standard, LEMO connectors W.H.Trzaska T0 PRR, February 10, 2006 39 Component costs (2 units = 1 main + 1 spare) • • • • • • • • item cost in USD Integrated circuits Resistors 0.04 Capacitors 0.2 LEMO connectors 4.6 Soldering 15 PCB production 100 Mechanics 100 Spare ICs 6 units per mod. 6 44 21 8 1 1 1 subtotal 120 4 8 74 30 100 100 60 TOTAL 496 USD W.H.Trzaska T0 PRR, February 10, 2006 40 FAN-OUT W.H.Trzaska T0 PRR, February 10, 2006 41 FAN-OUT main features • 4 channels per module • 3 outputs in each channel • Max. output amplitude 5V (R=50Ω) • Rise time 1.8 ns • Zero-level stability ±0.5 mV • Power consumption +5V – 0,24 A; -5V - 0,12 A; -12V – 0,2 A. •MPD module has VME 1U width and 6U height. W.H.Trzaska T0 PRR, February 10, 2006 42 FAN-OUT single unit cost estimate W.H.Trzaska T0 PRR, February 10, 2006 43 Time stability of zero level (output 1 channel 1) 2,0 Output Voltage Drift, mV 1,5 1,0 0,5 0,0 -0,5 -1,0 -1,5 -2,0 0 200 400 600 800 1000 1200 Time, min W.H.Trzaska T0 PRR, February 10, 2006 44 Out 1-1 & Out 2-1 crosstalk after correction W.H.Trzaska T0 PRR, February 10, 2006 45 TVDC electronic module, generating the trigger signal of the event’s T0-vertex W.H.Trzaska T0 PRR, February 10, 2006 46 TVDC diagram UVR T0A DS To PC CA B BA U CCA UVA AC ADC CS CLK BR Digital discriminator A > B1 OR CCC UVC UVC Register B1 Register B2 A < B2 & E UVbr CC T0v C – comparator; UV – univibrator; DS – discharge switch; СС – coincidence circuit; АС – anticoincidence circuit; CS – charge switch; BA – buffer amplifier; BR – buffer register; OR – mixer. W.H.Trzaska T0 PRR, February 10, 2006 V M UV T0C S 47 TVDC main features • range of conversion time intervals: 2,5 ns(5 ns); • quantization step: 20 ps (for 8bit conversion); • dead time of conversion: not more than 25 ns. • VME interface based on FPGA Xilinx® XC95108 Spectrum, characterizing the resolution of TVDC module The given parameters obtained with the use of timeamplitude converter and flash ADC with the digital discriminator for TO-vertex signal generation. W.H.Trzaska T0 PRR, February 10, 2006 48 TVDC cost estimation W.H.Trzaska T0 PRR, February 10, 2006 49 Input signals to TVDC W.H.Trzaska T0 PRR, February 10, 2006 50 Output signals of TVDC W.H.Trzaska T0 PRR, February 10, 2006 51 Multiplicity Discriminator W.H.Trzaska T0 PRR, February 10, 2006 52 MPD diagram CLK DAC I N P U T S 1 . . . 12 Comparator 1 Comparator 3 Comparator 2 Comparator 4 Analog Analog Switch S Out 1 W.H.Trzaska VME S VME NIM NIM (SemiCentral) (Central) T0 PRR, February 10, 2006 13 . . . 24 I N P U T S Out 2 53 MPD main features • Number of inputs: 24 • Maximum amplitude of the signal at each input: 3 V, minimal duration: 3 ns. • The output signals at the (Semi-Central and Central outputs are in the NIM standard with the 10 ns duration. • The maximum amplitude of the signals at the Out1 and Out2 are: ~3 V. • Power supply: +5V – 0.24A; -5V – 1.09A; +12V – 0.05A; -12V – 0.05A • MPD module has VME 1U width and 6U height. As the VME decoder is used a FPGA chip (XILINX XC95108). W.H.Trzaska T0 PRR, February 10, 2006 54 MPD single unit cost estimate W.H.Trzaska T0 PRR, February 10, 2006 55 V.Lyapin 21.03.05 Alternative solution for QTC: slewing correction in reverse Measured performance Our test has confirmed that with TDC range of 50 ns we get 5% accuracy of amplitude determination. In the test Canberra 454 CFD and LeCroy 4416 B LED were used. Further improved is possible (if needed) by using Timing Filter Amplifier to increase rise time of the analyzed pulses. 6000 LED-CFD time difference, ps The time difference between LED and CFD is proportional to the logarithm of amplitude. 5000 4000 3000 2000 1000 0 10 100 1000 10000 PMT Output, mV W.H.Trzaska T0 PRR, February 10, 2006 56 T0 Milestones Milestone planned expected 636 Electronics PRR Dec-05 10-Feb-06 637 T0C detector test Jan-06 Feb-06 638 T0C ready for installation T0A ready for installation Apr-06 Apr-06 Jul-06 Jul-06 639 W.H.Trzaska T0 PRR, February 10, 2006 57