Transcript Slide 1

Relativistic Classical Mechanics

XIX century crisis in physics: some facts

Maxwell : equations of electromagnetism are not invariant under Galilean transformations

Michelson and Morley : the speed of light is the same in all inertial systems

James Clerk Maxwell (1831-1879) Albert Abraham Michelson (1852 – 1931) Edward Williams Morley (1838 – 1923)

Postulates of the special theory

1) The laws of physics observers are the same to all inertial

2) The speed of light observers is the same to all inertial

Formulation of physics that explicitly incorporates these two postulates is called covariant

The space and time comprise a single entity: spacetime

A point in spacetime is called event

Metric of spacetime is non-Euclidean

7.1

Tensors

Tensor of rank n is a collection of elements grouped through a set of n indices

A n

..

• • • •

Scalar Vector Matrix Etc.

is a tensor of rank 0 is a tensor of rank 1 is a tensor of rank 2

A A A i ij

• •

Tensor product of two tensors of ranks m and n is a tensor of rank (m + n)

A n B



m

C



n

m

..

Sum over a coincidental index in a tensor product of two tensors of ranks m and n is a tensor of rank (m +

+ n

– 2)

j A

n B

m

D ik n

..

 

m

 2 ..

7.5

Tensors

Tensor product of two vectors is a matrix

A i B j

C ij

7.5

Sum over a coincidental index in a tensor product of two tensors of ranks 1 and 1 (two vectors) is a tensor

of rank 1 + 1 – 2 = 0 (scalar): scalar product of two vectors

A i B i

D i

Sum over a coincidental index in a tensor product of

two tensors of ranks 2 and 1 (a matrix and a vector) is a tensor of rank 2 + 1 – 2 = 1 (vector)

j A ij B j

D i

Sum over a coincidental index in a tensor product of two tensors of ranks 2 and 2 (two matrices) is a tensor of rank 2 + 2 – 2 = 2 (matrix)

j A ij B jk

D ik

Metrics, covariant and contravariant vectors

7.4

7.5

Vectors, which describe physical quantities, are called contravariant vectors superscripts and are marked with instead of a subscripts

A i

For a given space of dimension N, we introduce a concept of a metric – N x N matrix uniquely defining the symmetry of the space (marked with subscripts )

g ij

Sum over a coincidental index in a product of a

metric and a contravariant vecor is a covariant vector or a 1-form (marked with subscripts )

j g ij A j

A i

Magnitude : square root of the scalar product of a contravariant vector and its covariant counterpart

3D Euclidian Cartesian coordinates

7.4

7.5

Contravariant

Metric

g

      1 0 0

infinitesimal coordinate vector:

0 0

dr i

1 0 0 1           

dx dy dz

     •

Covariant

     1 0 0 0 1 0

infinitesimal coordinate vector:

0 0 1          

dx dy dz

          

dx dy dz

    

dr i

dr i dr i

j

3   1

g ij dr j

Magnitude :

i

3   1

dr i dr i

 (

dx

) 2  (

dy

) 2  (

dz

) 2

     1 0 0

3D Euclidian spherical coordinates

7.4

7.5

Contravariant

Metric

g

      1 0 0

infinitesimal coordinate vector:

r

0 0 2

r

2 0 0 sin 2      

dr i

    

dr d

d

     •

r

0 0 2

Covariant

r

2 0 0 sin 2 

infinitesimal coordinate vector:

         

d dr d

            

r

2

r

2 sin

dr d

2  

d

     

dr i

dr dr i i

j

3   1

g ij dr j

Magnitude :

i

3   1

dr i dr i

dr

2 

r

2

d

 2 

r

2 sin 2 

d

 2

Hilbert space of quantum-mechanical wavefunctions

7.4

7.5

Contravariant vector (ket):

 •

Covariant vector (bra):

 •

Magnitude :

  David Hilbert (1862 – 1943) •

Metric :

 

• •

Contravariant Metric

g

    1   0 0 0

4D spacetime

7.4

7.5

infinitesimal coordinate 4-vector :

0 0

dx

   0 0 1  0 0 1  0 0 0 1        

cdt

 

dx dy dz

     •

Covariant infinitesimal coordinate vector:

dx

   3   0

g



dx

  1   0   0 0  0 0 0 1  0 0 0 1  0 0 0 1      

cdt

   

dx dy dz

            

cdt

dx dy dz

    

Magnitude : 4D spacetime

 3   0

dx

dx

 

c

2

dt

2 

dx

2 

dy

2 

dz

2 7.4

7.5

This magnitude is called differential interval

ds

Interval (magnitude of a 4-vector connecting two events in spacetime):

s

c

2 

t

2  

x

2  

y

2  

z

2 •

Interval should be the same frames in all inertial reference

The simplest set of transformations that preserve the invariance of the interval relative to a transition from one inertial reference frame to another: Lorentz transformations

7.2

Lorentz transformations

We consider two inertial reference frames S and S ’; relative velocity as measured in S is v :

Then Lorentz transformations are:

ct

'   (

ct

     

r

  );

r v

c

 ; '  

r

   ( 1  1  

r

  ) 2   2 (   1 )    

ct

Lorentz transformations can be written in a matrix form

x

'    3   0

L

 

x

 Hendrik Antoon Lorentz (1853 – 1928)

7.2

Lorentz transformations

x

'    3   0

L

 

x

L

                  

x y z

1  (   

x

 1 )  

v x v

  2 (   1 )

v x v y v

2 (   1 )

v x v z v

2  

y

(  1  (   1 )

v x v y v

2  1 )  

v y v

  2 (   1 )

v y v z v

2 ( (   1  (     1 )  1 ) 

v

1 )  

z v v x v v

2

v y v z

2

v z z

  2           

7.2

Lorentz transformations L

 •

If the reference frame S of the reference frame S:

   (  , 0 , 0 )         0 0 •    0 0 0 0 1 0 0 0 0 1     

ct

' 

x

' 

y

' 

z

'  

y

 (

ct

(

x

 

z t

' 2 

t

' 1  

x ct

)   ) (

t

2

t

' 1

t

' 2 

t

1      

c

(

t

1 (

t

2   

c

c

(

x

2 

If two events happen at the same location in S:

x

2

x

1 )

x

2 )

x

1 )) 

x

1

t

' 2 

t

' 1   (

t

2 

t

1 ) •

Time dilation

 

v c

 0 ;   1 ;

t

' 

t

;

x

' 

x

 

ct

x

vct c

x

vt

7.2

Lorentz transformations L

 •

If the reference frame S of the reference frame S:

   (  , 0 , 0 )         0 0 •    0 0 0 0 1 0 0 0 0 1     

ct

' 

x

'  

y

' 

z

' 

y

 (

ct

(

x

 

x

)  

ct

)

z x

' 2 

x

' 1   (

x

2

x

' 1

x

' 2     (

x

1 (

x

2   

ct

1 ) 

ct

2 ) 

x

1

If two events happen at the same time in S:

 

c

(

t t

2 2 

t

1 )) 

t

1

x

' 2 

x

' 1   (

x

2 

x

1 ) •

Length contraction

Velocity addition

If the reference frame S ‘ moves parallel to the x axis of the reference frame S: L

S

S

'          0 0    0 0 0 0 1 0 0  0   0 1   •

If the reference frame S ‘‘ moves parallel to the x axis of the reference frame S ‘: L

S

' 

S

''          0 0 ' '  '    0 0 ' '  ' 0 0 1 0 0 0 0 1      7.3

7.3

Velocity addition L

S

• • 

frame S to the reference frame S ‘‘:

S

'' 

L

S

' 

S

''

L

S

S

'          ' ( ' 1 (   0 0    ' ) ' )

L

S

S

''

The Lorentz transformation from the reference On the other hand:

         0 0 '' ''  ''    0 0 ''  '' '' 0 0 1 0 0 0 0 1         ' ( 1  ' '   ' ( 1   ' )  ' '  ' '   ' (    ' )  ' (   0 0 ' '      1  ' ) ' )    ' ' 0 0 1 0 0 0 0 1     

Four-velocity

Proper time is time measured in the system where the clock is at rest

 •

For an object moving relative to a laboratory

u

0

u

1  

system, we define a contravariant vector of four velocity :

d

(

ct

)

d

dx d

u

2      

v dx d

d u

  (

c d

  )

dx

d

  

y

;

u

3   

d v dx

( 

z

c

)  

dx dt

 

v x

       

v v

v c x y z

     7.4

7.4

Four-velocity

Magnitude of four-velocity

 3   0

u

u

   

g



u

  

u

  ( 

c

) 2  ( 

v x

) 2  ( 

v y

) 2  ( 

v z

) 2 

c

 1  (

v x

) 2  (

v y

) 2  (

v z

) 2

c

2 

c

 1 

v

2

c

2 

c

  1 

c

 1   0   0 0 0  1 0 0 0 0  1 0  0 0 0 1             

v v

v c x y z

              

c

  

v v v x y z

      3   0

u

u

 

c

2   1 1   2 ;  

v c

7.1

Minkowski spacetime

ct

' • 

Lorentz transformations for parallel axes:

 (

ct

 

x

);

x

'   (

x

 

ct

)

t

y

' 

y

;

z

' 

z

How do x ’ and t’ axes look in the x and t axes?

t’

Hermann Minkowski (1864 - 1909)

x’

ct

t

’ axis:

t

x

c

v x

'  0

x

x

’ axis:

t

'  0  

x

 0

x

t

 

x c

vx c

2 

ct

 0

x

Minkowski spacetime

When

v

c

   1

t

How do x ’ and t’ axes look in the x and t axes?

t

’ axis:

x

ct t

x

'  0

x c

x

’ axis:

ct

 

x ct

x

 0

t

'  0

t

x c x

 

ct

 0

x

7.1

7.1

Minkowski spacetime

• •

Let us synchronize the clocks of the S and S ’ frames at the origin

t t’

Let us consider an event

In the S frame, the event is to the right of the origin

x’ x

In the S ‘ frame, the event is to the left of the origin

7.1

Minkowski spacetime

• •

Let us synchronize the clocks of the S and S ’ frames at the origin

t t’

Let us consider an event

In the S frame, the event is after the synchronization

x’ x

In the S ‘ frame, the event is before the synchronization

Minkowski spacetime

( 

s

) 2  0 7.1

( 

s

) 2  0

7.4

Four-momentum

p

p

0 •

For an object moving relative to a laboratory system, we define a contravariant vector of four-

momentum :

mu

p

1 

mu

1 

m

v x

; 

mu

0 

m

c p

2 

m

v y

; •

Magnitude of four-momentum

 3   0

p

3 

m

v z p

p

     

m m m

v m

  

v v c x y z

      

g



p

  

p

  (

m

c

) 2  (

m

v x

) 2  (

m

v y

) 2  (

m

v z

) 2 

mc

 1 

v

2

c

2 

mc

 3   0

p

p

 

m

2

c

2

 3   0

p

p

 

m

2

c

2 

Four-momentum

(

m

c

) 2  (

m

v x

) 2  (

m

v y

) 2  (

m

v z

) 2 •

Rest-mass : mass measured in the system where the object is at rest

m

7.4

(  3   0

p

 •

p

For a moving object:

  (

c

) 2  ( 

v

) 2  ( 

mc

) 2

m

 (

c

) 2  (

mc

) 2

c

2 ) 2 • •  (

mc

2 ) 2  (

v

 ) 2

c

2  (

mc

2 ) 2  ( 

p

) 2

c

2

The equation has units of energy squared

E

2  (

mc

2 ) 2  ( 

p

) 2

c

2

If the object is at rest

p

 0

E

0 2  (

mc

2 ) 2

E

0 

E

mc

2  ( ~

c

2

v

 ) 2

Four-momentum

      ~

c v x

~ ~

E v v y z

     

E

0 

mc

2 7.4

E

0 

mc

2

Four-momentum

Rest-mass energy : energy of a free object at rest – an essentially relativistic result

E E

c

2 

m

c

2 

mc

2 ( 1   2 )  1 / 2  •

mc

2 •

For slow objects:

( 1   2 )  1 / 2 

mc mv

2 2 2     1   

E

 0  2 2

E

0    

mc

2    1 

v

2

c

2 2    

E

0 

mv

For free relativistic objects, we introduce therefore

2 2

the kinetic energy as

T

E

E

0

T

E

mc

2  

mc

2 

mc

2  (

mc

2 ) 2  ( ~

p

) 2

c

2 

mc

2 7.4

Non-covariant Lagrangian formulation of relativistic mechanics

7.9

d dt

As a starting point, we will try to find a non covariant Lagrangian formulation (the time variable is still separate)

The equations of motion should look like

mv i

1   2

mv i

1   2   

dV dx i

 

v i mv i

 

mc

2 1   1  2  2   

L

v i L

T

V

;  

V

x i

 

L

x i L

 

mc

2

i i dp

 

dt

 1 , 2 , 3 

V

x i

1   2 

V

Non-covariant Lagrangian formulation of relativistic mechanics

7.9

p i

d dt

 •   •

For an electromagnetic potential, the Lagrangian is similar

L

 

mc

2 1   2 

q

 

q i

3   1

A i v i

The equations of motion should look like

mv i

1   2 

qA i d dt

 

mv i

1   2 

qA i

  

q

    

x i i

dp i dt

i

3   1   

L

x i

1 , 2 , 3

v i

A i

x i

 

mv i

1   2    

q

     

A

t

   

q v

 (   

A

) 

q

( 

E

v

  

B

)

Non-covariant Lagrangian formulation of relativistic mechanics

7.9

d dt

  •

Example: 1D relativistic motion in a linear potential

L

 

mc c

2  2 

xma

;

a

const

The equations of motion:

mc x

c

2 

x

 2   

ma x

x

0 

c a

x

c

2 

x

 2 

at

 

c c

2  (

at

  ) 2 

x

 

c

2   2 

atc

 

c c

2  (

at

  ) 2 •

Acceleration is hyperbolic , not parabolic

Useful results

  1 1   2  1  1  (

v c

2 ) 2 (

c

2  ( 

v

) 2 )  2 

c

2  2  1  1  (

v

) 2

c

2 (

v

 ) 2 

c

2  

c

2 2  2 (

v

 ) 2   2

c

2 

c

2 

c

  2 ( 

v

) 2 

c

2

7.9

Non-covariant Hamiltonian formulation

8.4

of relativistic mechanics

We start with a non-covariant Lagrangian:

L

 

mc

2 1   2 

V

m

  

c

2

Applying a standard procedure

H

  3   

c i

2 2 1  

m

v

i mc

v i

2 

mc

2 

V

H

1 

m

c

2 

T

  2 

V E

0 

V

T

V

  

m

i

3   ( 1

v

 )

p

2

i v i

mc

2 

V

L mc

2  

T

 

V E

0 

V

(

v

 ) 2 •

Hamiltonian equals the total energy of the object

c

2  

c

2 2

T

 

mc

2 

mc

2

7.9

Non-covariant Hamiltonian formulation

8.4

of relativistic mechanics

We have to express the Hamiltonian as a function of momenta and coordinates:

H

m

c

2 

V

mc

 2 ( 

v

) 2 

c

2 

V

c

2 (  

m v

) 2 

m

2

c

4 

V

c

2 ( 

p

) 2 

E

0 2 

V

c

  2 ( 

v

) 2 

c

2

H

c

2 ( 

p

) 2 

E

0 2 

V p

      

m m m

v m

  

v v c x y z

    

More on symmetries

Full time derivative of a Lagrangian:

dL dt

  

L t

M m

  1  

q L m q

m

M m

  1  

q

L m

Form the Euler-Lagrange equations:

q

m

 

L

t

M

m

 1

d dt

  

L

q

m

 

q

m

m M

  1 

L

q

m

q

m

 

L

t

d dt m M

  1 

L

 

m q

m

L

t

 

d dt

 

m M

  1 

L

q

m

If

L

t q

m

L

   

dH dt

 0 

H

M m

  1 

L

q

m q

m

L

const

7.9

Non-covariant Hamiltonian formulation

8.4

of relativistic mechanics

L

  •

Example: 1D relativistic harmonic oscillator

mc c

2 

x

 2 

kx

2 2

H

m

c

2 

V

c mc

3 2 

x

 2 

L

t

 •

The Lagrangian is not an explicit function of time

0 

H

E tot

const c mc

3 2 

x

 2 

kx

2 2 

E tot

kx

2 2

x

 2 

c

2    2

E

2

mc

3

tot

kx

2   2

t

t

0   ( 2

cE

( 2

E tot tot

kx

2 

kcx

2 ) 2 )

dx

 ( 2

mc

3 ) 2 •

The quadrature involves elliptic integrals

Covariant Lagrangian formulation of relativistic mechanics: plan A

7.10

So far, our canonical formulations were not Lorentz invariant – all the relationships were derived in a specific inertial reference frame

We have to incorporate the time variable as one of the coordinates of the spacetime

We need to introduce an invariant parameter ,

describing the progress of the system in configuration space:

Then

x

'  

dx

d

 ;   0 , 1 , 2 , 3

I

   1 2   (

x

 ,

x

'  ,  )

d

7.10

Covariant Lagrangian formulation of

I

relativistic mechanics: plan A

  1  2  (

x

 ,

x

'  ,  )

d

Equations of motion

d d

   

x

'     

x

 •

We need to find Lagrangians producing equations of motion for the observable behavior

t

 •

First approach: use previously found Lagrangians

x

and replace time and velocities according to the rule:

dx i c

0

i dx dt

i

1 ,  2 ,

dx d

3 

i d

dt

d d

dt

 

d d

x

 

i

'

x c

0   

c x

'

i x

' 0

7.10

Covariant Lagrangian formulation of

dx i dt

• • 

c

x

'

i x

' 0

Then

 2   1 ;

relativistic mechanics: plan A

i

 1 , 2 , 3

L

 

I

x i

,  2

t t

1

L

(

x

0

c

,

x i c

,

t

,

x

'

i x

' 0

x

i

  )

dt

1

c

So, we can assume that

dx

0

d

  (   1  2

L

 

d

x

 , 

x i x

'    1 ,  2 )

x

0

c x

' 0

c

 ,

c L

 

x

' 0

c x

'

i x

' 0

x i L

  ,  

d x

0

c x i

,  

x

0

c

,

c x

0

c t

 

x

'

i x

' 0 ,

c

x

0  

d

x

'

i x

' 0

c

  •

Attention: regardless of the functional dependence, the new Lagrangian is a homogeneous function of the generalized velocities in the first degree:

 (

x

 ,

ax

'  ) 

a

 (

x

 ,

x

'  )

Covariant Lagrangian formulation of relativistic mechanics: plan A

 (

x

 ,

ax

'  ) 

a

 (

x

 ,

x

'  ) 7.10

 • •

From Euler’s theorem on homogeneous functions it follows that

   3   0

x

'   

x

 ' 

Let us consider the following sum

 3   0

x

'    

x

   3   0

x

'   

x

    3   0

x

'    

x

'     ,  3   0

x

'   

x

  

x

'    

x

'    

x

' 

x

'   2  

x

 

x

'   0   ,  3   0

x

' 

x

'   2  

x

 

x

'    ,  3   0

x

' 

x

"   2  

x

'  

x

' 

7.10

Covariant Lagrangian formulation of

  ,  3   0  3   0  

x

' 

x

' 

relativistic mechanics: plan A

  

x

   ,  3   0

x

' 

x

'  

x

  2  

x

'    ,  3   0

x

" 

x

'  

x

'   2  

x

' 

x

'   2  

x

 

x

'  

x

" 

x

'   2  

x

'  

x

'     3     0

x

'   3 0    

x

   

x

' 

x

'    

x

'    

x

' 

x

"      3   0

x

' 

d d

   

x

'   3   0  

d d

   

x

'     

x

  

x

'   0

d d

   

x

'     

x

 •

If three out of four equations of motion are satisfied, the fourth one is satisfied automatically

7.10

Example: a free particle

L

  •

We start with a non-covariant Lagrangian

2 2

mc

2 1   2  

mc

2 1 

x c

 

c

z

c

2  

mc

2

x

' 1 1    

c x c

' 0    2

x

' 2    

c x c

' 0    2

x

' 3   

c

x c

' 0    2  

mc

2

dx i

c i dt

 1 , 2 , 3

x

'

x

' 0

i

1 

i

3   1   

x x

' 0

i

'    2

x c

' 0

L

  

x i

,  (

x

 ,

x

'  )

x

0 

c

,

c x

' 0

c x x

'

i

' 0   

L

 

x i

, 

x

0

c

mc

2 ,

c x

'

i x

' 0

x

' 0  

c

1 

i

3   1   

x x

' '

i

0    2  

mc

  2 

i

3   1   2

Example: a free particle

x

' 0

c L

 

x i

,

x

0

c x

'

i

,

c x

' 0    

mc

  2 

i

3   1   2  

mc

 3   0

x

' 

x

'  7.10

d d

   

mc

 3   0

x

' 

x

'  •      

x

' 

Equations of motion

    

mc

 3   0

x

' 

x

'         

d d

  0   

x

' 

x

'  

dx

d

 

dx

d

d

d

 

u

d

d

    

x

  1 2

d d

    

d

 

u

x

' 

d

mcx

'   3   0

x

' 

x

'       0

7.10

Example: a free particle

x

'  2

u

d d

      3   0

d

mcu

u

d

d

d

u

d

d

      0

d d

mcu

c

 0

d

(

mu

d

 )  0

d d

    

mcu

  3   0

u

u

      0

dp d

   0 •

Equations of motion of a free relativistic particle

d

(

m

v x d

 ) 

d

(

m

v d

y

) 

d

(

m d

 

v z

)  0

dE d

  0  3   0

u

u

 

c

Covariant Lagrangian formulation of relativistic mechanics: plan B

7.10

• •

Instead of an arbitrary invariant parameter, use proper time

However

 3   0

u

u

   3   0

dx

d

dx

d

 

c

2

we can

Thus, components of the four-velocity are not independent: they belong to three-dimensional manifold ( hypersphere ) in a 4D space

Therefore, such Lagrangian formulation has an inherent constraint

We will impose this constraint only after obtaining the equations of motion

Covariant Lagrangian formulation of relativistic mechanics: plan B

7.10

In this case, the equations of motion will look like

d d

  

u

     

x

 •

But now the Lagrangian does not have to be a homogeneous function to the first degree

Thus, we obtain freedom of choosing Lagrangians from a much broader class of functions that produce Lorentz-invariant equations of motion

E.g., for a free particle we could choose

d

(

mu

d

 )  0    3   0

mu

u

 2

Covariant Lagrangian formulation of relativistic mechanics: plan B

7.10

If the particle is not free, then interaction terms have to be added to the Lagrangian – these terms must generate Lorentz-invariant equations of motion

In general, these additional terms will represent interaction of a particle with some external field

The specific form of the interaction will depend on the covariant formulation of the field theory

Such program has been carried out for the following fields: electromagnetic, strong/weak nuclear, and a weak gravitational

Covariant Lagrangian formulation of relativistic mechanics: plan B

7.10

Example: 1D relativistic motion in a linear potential

In a specific inertial frame, the non-covariant Lagrangian was earlier shown to be

L

 

mc c

2 

x

 2 

xma

;

a

const

The covariant form of this problem is

   3   0

mu

u

 2   3   0

G

x

 •

In a specific inertial frame, the interaction vector will be reduced to

G

 

ma

  1

Example: relativistic particle in an electromagnetic field

7.10

7.6

• •

For an electromagnetic field, the covariant Lagrangian has the following form:

d

(

mu

d

  )    3   0

q

  

mu

 2

The corresponding equations of motion:

A

  

u

    3   0  3   0

qA

 (  (

A

 

x

u

x

0 , )  

x

1  ,

x q

2 ,  3   0

x

3 )

u

F



u

A

 

E

B

    

A

1

A

/

A

3  2

c

       

A

t

        

A F

  1

c

         0

E E E x y z E x

0

cB z

cB y E y

cB z

0

cB x

E cB cB x

0

z y

     

d

(

mu

1

d

 ) 

q

 3   0

F

1 

u

Example: relativistic particle in an electromagnetic field

7.10

7.6

d

(

mu

1

d

 ) 

q

 3   0

F

1 

u

 

d

( 

m

v x

) 

q

( 

E x

c

cB z

v y

dt c dp dt

x

q c

(

E x

B z v y

B y v z

) 

q c

( 

E

 

v

 

B

)

x

Maxwell's equations follow from this covariant

cB y

v z

)

formulation (check with your E&M class)

F

  1

c

         0

E E E x y z E x

0

cB z

cB y E y

cB z

0

cB x

E cB cB x

0

z y

     

Covariant Lagrangian formulation of relativistic mechanics: plan B

7.10

What if we have many interacting particles ?

Complication #1 : How to find an invariant parameter describing the evolution? (If proper time, then of what object?)

Complication #2 : How to describe covariantly the interaction between the particles? (Information cannot propagate faster than a speed of light – action-at-a-distance is outlawed)

Currently, those are the areas of vigorous research

Covariant Hamiltonian formulation of relativistic mechanics: plan A

8.4

In ‘Plan A’, Lagrangians are homogeneous functions

of the generalized velocities in the first degree

(

x

 ,

ax

) 

a

 (

x

 ,

x

'  )    3   0

x

'   

x

 '  •

Let us try to construct the Hamiltonians using canonical approach (Legendre transformation)

     

x

'     3   0  

x

'      3   0   

x

' 

x

'         0 •

‘Plan A’: a bad idea !!!

Covariant Hamiltonian formulation of relativistic mechanics: plan B

8.4

p

 •

In ‘Plan B’: instead of an arbitrary invariant parameter, we use proper time

   

u

    3   0

p

u

     3   0   

u

u

   •

We have to express four-velocities in terms of conjugate momenta and substitute these expressions into the Hamiltonian to make it a function of four coordinates and four-momenta

Don’t forget about the constraint:

 3   0

u

u

 

c

2

8.4

Covariant Hamiltonian formulation of relativistic mechanics: plan B

For a free particle:

   3   0

mu

u

 2

p

    

u

     3   0  

u

u

   3   0

p

u

p

mu

u

   2 /

m

    3    0  3   

u

  3   0

mg



u

u

 2

p

 

m

p

  3   0 

p

  3   0 2

m p

p

 2

m p

    3   0

mg



u

p

p

 2

m

 0

p

p

 2

m

mu

Covariant Hamiltonian formulation of relativistic mechanics: plan B

8.4

p

u

  3   0   •   

u

p

p

 (

For a particle in an electromagnetic field:

p m

 

qA

m

  

u

 

qA

  )   3      0   3   3

mu

   0 3  0 0

mu

 ( ( 2 

u

2 

p

p

u

  

qA

  3        3    0 3   0

qA

p

qA

 )(

p

u u

  2

m

)( 0 2

m qA

p

  

u

   

qA

qA

 )

mu

 )   3    0

qA

qA

 (

p

 

qA

 )

7.8

Relativistic angular momentum

For a single particle, the relativistic angular momentum is defined as an antisymmetric tensor of rank 2 in Minkowski space:

m

 

x

p

 

x

p

m

       

xE yE zE

/ /

c c

/

c

   0

ct

mv x ct

mv y ct

mv z ct

mv x

m

(

yv x

0 

xv y

) 

m

(

zv x

xE

/

c

xv z

)

ct

mv y

m

(

xv y

  

m

(

zv y

0 

yE

/

c yv x

)

yv z

)

ct

  

mv m

(

m

(

z xv z yv z

0   

zE zv x zv y

/ ) )

c

      •

This tensor has 6 independent elements; 3 of them coincide with the components of a regular angular momentum vector in non-relativistic limit

7.8

Relativistic angular momentum

dm

 

d

 •

Evolution of the relativistic angular momentum is determined by:

mu

u

d d

 (

x

p

 

mu

u

 

x

 

x

p

 ) 

dp

d

p

 

x

dx

d

dp

d

 

x

dp d

  From the  equations of motion

p

dm



d

 

x

dx

d

dp

d

  

x

x

dp

d

dp

d

 •

For open systems, we have to define generalized relativistic torques in a covariant form

dm



d

 

N



Relativistic kinematics of collisions

The subject of relativistic collisions is of considerable interest in experimental high-energy physics

Let us assume that the colliding particles do not interact outside of the collision region, and are not affected by any external potentials and fields

We choose to work in a certain inertial reference

frame; in the absence of external fields, the four momentum of the system is conserved

dp

d

Conservation of a four-momentum includes conservation of a linear momentum and conservation of energy

 0 7.7

Relativistic kinematics of collisions

Usually we know the four-momenta of the colliding particles and need to find the four-momenta of the collision products

There is a neat trick to deal with such problems:

1) Rearrange the equation for the conservation of the four-momentum of the system so that the four momentum for the particle we are not interested in stands alone on one side of the equation

2) Write the magnitude squared of each side of the equation using the result that the magnitude squared of a four-momentum is an invariant

7.7

Relativistic kinematics of collisions

Let us assume that we have two particles before the collision (A and B) and two particles after the collision (C and D)

7.7

Conservation of the four-momentum of the system:

(

p A

)   (

p B

)   (

p C

)   (

p D

)  •

1) Rearrange the equation (supposed we are not interested in particle D)

(

p D

)   (

p A

)   (

p B

)   (

p C

)  • 

2) Magnitude squared of each side of the equation:

3  3   0  (

p A

)   (

p B

)     0  ( (

p D p C

)  )  (

p

(  

D p

) 

A

)    (

p B

)   (

p C

)  

Relativistic kinematics of collisions

  3   0  (

p A

)   3   0 (

p i

)  (

p j

)    (

p B

 3   0 )   ( (

p D

) 

p C

)  (  ,  3   0 (

p i

) 

g

 (

p D

)    (

p j

) 

p A

)     (

p B

)   3   0 (

p i

)   (

p C

)  (

p j

)  

i

 7.7

j

  3   0 (

p i

)  (

p j

)   3   0 (   3   0 (

p i

)  (

p i

)  (

p j

) 

p i

)    (

m i c

) 2 2  3   0 (

p i

)  (

p j

)  (

m D c

) 2  (

m A c

) 2  (

m B c

) 2  (

m C c

) 2  2  3   0  (

p A

)  (

p B

)   (

p A

)  (

p C

)   (

p B

)  (

p C

)  

Example: electron-positron pair annihilation

Annihilation of an electron and a positron produces two photons

e

 

e

   1   2 •

Conservation of the four-momentum of the system:

(

p

 )   (

p

 )   (

p

 1 )   (

p

 2 )  •

Let us assume that the positron is initially at rest :

p

  0 ;

E

 

mc

2 •

1) Rearrange the equation

(

p

 2 )   (

p

 )   (

p

 )   (

p

 1 ) 

Example: electron-positron pair

(

p

 2 ) 

annihilation

 (

p

 )   (

p

 )   (

p

 1 )  •

2) Magnitude squared of each side of the equation:

  3   0  (

p

 )   (

p

  3   0 )   ( (

p

 2

p

 1 )  )  (

p

 2  ( ) 

p

 )    (

p

 )   (

p

 1 )   (

m

 2

c

) 2  (

mc

) 2  (

mc

) 2  (

m

 1

c

) 2

m

 1 

m

 2  0  2  3   0  (

p

 )  (

p

 )  (

mc

) 2  (

p

 )  (

p

 1 )    3   0  (

p

 )  (

p

 )   (

p

 )  (

p

 1 )   (

p

 )  (

p

 1 )    (

p

 )  (

p

 1 )    0

Example: electron-positron pair

(

mc

) 2   3   0  (

p

 )  (

p

 ) 

annihilation

 (

p

 )  (

p

 1 )   (

p

 )  (

p

 1 )    0  3   0 (

p

 )  (

p

 )  

E

c E

E

  

p

 

c

mc

2 ; 

p

 

p

  0 

E

m

 3   0 (

p

 )  (

p

 1 )  

E

c E

 1

c

 

p

  

p

 1 

E

 1

m

 3   0 (

p

 )  (

p

 1 )  

E

c E

 1

c

 

p

  

p

 1 

E

E

 1

c

2  

p

 

p

 1 cos  1

Example: electron-positron pair

(

mc

) 2 

E

m

E

 1

m

annihilation

E

E

 1

c

2  

p

 

p

 1 cos  1  0

E

 1 

c

p

 1 (

mc

) 2

E

 1  

m

E

m

E

 1

m

E

E

 1

c

2 

E c

 2  

p

 cos

c

 1 

E

 1

c

p

 cos  1  0    (

mc

)

E

 2 1  

E

 (

m mc

2

mc

 2 (

E

mc

)  2

c

 

p E

  ) cos  1 •

The photon energy will be at a maximum when emitted in the forward direction, and at a minimum when emitted in the backward direction