Transcript Document

1.) Introduction
2.) Mission &
Market
3.) Operations
4.) Walk Around
5.) Payload
Oculus Superne
6.) Aircraft Sizing
7.) Aerodynamics
8.) Stability/Trim
9.) Propulsion
10.) Structures
11.) Cost
12.) Summary
Andy Cottle
Lin Haack
Brian Roth
Jeff Studtman
1
Sean Duncan
Afzaal Hassan
Dave Stinson
Justin Wheeler
1.) Introduction
2.) Mission &
Market
3.) Operations
4.) Walk Around
5.) Payload
6.) Aircraft Sizing
7.) Aerodynamics
8.) Stability/Trim
9.) Propulsion
10.) Structures
11.) Cost
12.) Summary
CoDR Overview
• Introduction
• Mission Statement
& Market
• Operations
• Walk Around
• Payload and
Capabilities
2
•
•
•
•
•
•
•
Aircraft Sizing
Aerodynamics
Stability/Trim
Propulsion
Structures
Cost Analysis
Summary
1.) Introduction
2.) Mission &
Market
3.) Operations
4.) Walk Around
5.) Payload
6.) Aircraft Sizing
7.) Aerodynamics
8.) Stability/Trim
9.) Propulsion
10.) Structures
11.) Cost
12.) Summary
Mission Statement
• To provide a multi-service UAS which acts
as the primary detection method for third
party infringement of pipelines, performs
power-line equipment inspection, and
detects threats to forested areas. The
system will also facilitate a rapid response
in the event of a complete system failure or
natural disaster.
3
1.) Introduction
2.) Mission &
Market
Target Market
3.) Operations
4.) Walk Around
5.) Payload
6.) Aircraft Sizing
7.) Aerodynamics
8.) Stability/Trim
9.) Propulsion
10.) Structures
11.) Cost
12.) Summary
• Business Plan
• Target Customers
Mission
•
Power Line
•
Pipeline
•
Forest Monitoring
• DOT
• NPS
• Private Oil/Gas Companies
4
Customer Attributes
1.) Introduction
2.) Mission &
Market
3.) Operations
4.) Walk Around
• Patrolling the Right-of-
5.) Payload
6.) Aircraft Sizing
Way
7.) Aerodynamics
8.) Stability/Trim
– Third Party Infringement
9.) Propulsion
10.) Structures
• Constant Coverage
11.) Cost
12.) Summary
• Cost Reduction
• Safety Factors
5
1.) Introduction
2.) Mission &
Market
Engineering Requirements
3.) Operations
4.) Walk Around
5.) Payload
6.) Aircraft Sizing
7.) Aerodynamics
8.) Stability/Trim
9.) Propulsion
10.) Structures
11.) Cost
12.) Summary
Engineering
Attributes
GPS Accuracy
Number of
Operators
Sense and Avoid
Accuracy
Engine Efficiency
Communication
Relay Time
Empty Weight
Number of
Systems
Operational
Altitude
Endurance
Importance
(Absolute)
243
Improtance
(Relative)
10.90%
225
10.09%
211
9.47%
201
9.02%
190
8.52%
162
7.27%
162
7.27%
134
6.01%
124
5.56%
Payload Capability
123
5.52%
118
5.29%
107
4.80%
93
87
4.17%
3.90%
Time between
Overhauls
Operational
Speed
Stall Speed
T/O Length
6
1.) Introduction
2.) Mission &
Market
3.) Operations
4.) Walk Around
5.) Payload
6.) Aircraft Sizing
7.) Aerodynamics
8.) Stability/Trim
9.) Propulsion
10.) Structures
11.) Cost
12.) Summary
Operation Profile
• Type of Equipment
– Ground Stations
– Relay Stations
– UAV
• Takeoff/Landing on Rough Airfield
• Operate from 1000 ft (AGL)
• Observe & Transmit to Local Relay Stations
• Relay Stations Transmit Information Back to
Operator
• Number and Frequency of UAV Flight Completely
Customer Defined
7
1.) Introduction
2.) Mission &
Market
Walk Around
3.) Operations
4.) Walk Around
5.) Payload
6.) Aircraft Sizing
7.) Aerodynamics
8.) Stability/Trim
9.) Propulsion
10.) Structures
11.) Cost
12.) Summary
8
1.) Introduction
2.) Mission &
Market
Internal Walk Around
3.) Operations
4.) Walk Around
5.) Payload
6.) Aircraft Sizing
7.) Aerodynamics
8.) Stability/Trim
9.) Propulsion
10.) Structures
11.) Cost
12.) Summary
9
1.) Introduction
2.) Mission &
Market
3.) Operations
4.) Walk Around
5.) Payload
6.) Aircraft Sizing
7.) Aerodynamics
8.) Stability/Trim
Sensors
• LIDAR (Laser Imaging
Detection and Ranging)
– Corridor Mapping
– Land Surveying
– Vegetation Growth / Density
LiteMapper 5600 components
Airborne Lidar Terrain Mapping System
9.) Propulsion
10.) Structures
11.) Cost
• IR/Visual Camera
- Thermal Imaging
- Video Tracking
- Detailed Pictures
12.) Summary
10
Payload Requirements
1.) Introduction
2.) Mission &
Market
3.) Operations
4.) Walk Around
LIDAR
CCNS
IR / Visual Camera
Total
5.) Payload
6.) Aircraft Sizing
7.) Aerodynamics
Power Consumption
W
hp
30
0.04
25
0.034
100
0.134
155
0.21
Weight (lbs)
13
9
20
42
Dimensions (ft)
1.8x.66x.71
.82x.69x.43
.66(d)x1.1(h)
1.5 ft 3
17
N/A
N/A
N/A
N/A
N/A
1500
2
8.) Stability/Trim
Installation Weight (40% of
Total Payload Weight)
Power From Alternator
9.) Propulsion
10.) Structures
11.) Cost
12.) Summary
•
LIDAR
•
– Operates Optimally
at 650-1300ft AGL
– Used Only During
Inspection
IR / Visual Camera
– Runs Throughout
Mission
– @ 1000 ft AGL
• 271,212 ft2
– @ 12 x Zoom
• 1462 ft2
11
1.) Introduction
2.) Mission &
Market
3.) Operations
4.) Walk Around
5.) Payload
6.) Aircraft Sizing
7.) Aerodynamics
8.) Stability/Trim
9.) Propulsion
10.) Structures
11.) Cost
12.) Summary
Sizing Information and
Assumptions
• Sizing Code: Avid ACS v4.1
• Equation Sets
– General Aviation Component Weight
Equations
– Tail Volume Coefficient
• Fixed Engine
– Weight
– Horsepower
12
1.) Introduction
2.) Mission &
Market
3.) Operations
4.) Walk Around
5.) Payload
6.) Aircraft Sizing
7.) Aerodynamics
8.) Stability/Trim
9.) Propulsion
10.) Structures
11.) Cost
12.) Summary
Carpet Plot Constraints and
Inputs
• Constraints
– 925 ft takeoff
constraint (ground
roll + 50 ft obstacle
clearance)
– 550 ft landing
constraint
– Stall speed, ceiling
and 2g maneuver
not influential
13
CLmax
1.5
Cruise altitude [ft] MSL
5000
Velocity [kts]
100
Range [n.m.]
1300
Payload Weight [lbs]
60
Engine Weight [lbs]
48
Power [hp]
40
Propeller Diameter [ft]
2.5
Carpet Plot
1.) Introduction
2.) Mission &
Market
268
3.) Operations
W/S = 18 [lbs/ft2]
4.) Walk Around
Sto = 925
7.) Aerodynamics
8.) Stability/Trim
9.) Propulsion
10.) Structures
11.) Cost
12.) Summary
Gross Take Off Weight [lbs]
5.) Payload
6.) Aircraft Sizing
Feasible area
266
SL = 550ft
264
W/S = 20 [lbs/ft2]
262
W/S = 22 [lbs/ft2]
260
258
AR = 16
256
AR = 14
254
AR = 12
Design Point
252
AR = 10
250
Wing Loading [lbs/ft2]
AR =10
AR = 12
AR = 14
AR = 16
Landing Constraint
Take Off Constraint
14
1.) Introduction
2.) Mission &
Market
3.) Operations
Sizing Code Output
4.) Walk Around
Gross Weight [lbs]
255
5.) Payload
W/S
20.3
6.) Aircraft Sizing
7.) Aerodynamics
Aspect Ratio
8.) Stability/Trim
Wing Area [ft2]
12.55
Endurance [hrs]
14.388
Take off Distance [ft]
915.6
Landing Distance [ft]
537.7
9.) Propulsion
10.) Structures
11.) Cost
12.) Summary
10
Fuel Weight [lbs]
39
L/D
13
Power/Weight [hp/lbs]
ηp
15
0.15
0.821
1.) Introduction
2.) Mission &
Market
3.) Operations
4.) Walk Around
5.) Payload
6.) Aircraft Sizing
7.) Aerodynamics
8.) Stability/Trim
9.) Propulsion
10.) Structures
11.) Cost
12.) Summary
16
1.) Introduction
2.) Mission &
Market
Compliance Matrix
3.) Operations
4.) Walk Around
5.) Payload
6.) Aircraft Sizing
7.) Aerodynamics
8.) Stability/Trim
9.) Propulsion
10.) Structures
11.) Cost
12.) Summary
Parameter
Gross Weight [lbs]
Payload Capability Installed [lbs]
Endurance [hrs]
SFC at Cruise [lb/bhp/hr]
Operational Altitude [ft AGL]
Loiter Velocity [kts]
Stall Speed [kts]
Takeoff Length w / 50ft obstacle [ft]
GPS Accuracy [in]
Propeller Efficiency
Number of Operators
Communication Relay Time [secs]
Sense and Avoid Accuracy [ft]
Time between Overhauls [hrs]
17
Targets
300
30
24
0.4
1000
150
30
500
4
0.9
2
5
1
2000
Threshold
500
50
12
0.6
2000
100
40
1500
20
0.7
4
10
5
750
Current
255
60
14
0.48
1000
100
60
936
4
0.82
2
600
Performance
1.) Introduction
2.) Mission &
Market
6.) Aircraft Sizing
7.) Aerodynamics
8.) Stability/Trim
9.) Propulsion
10.) Structures
11.) Cost
12.) Summary
x 10
Flight Envelope
4
V-n diagram
2
4
n=1
1.5
3.5
3
1
n=2
2.5
n
5.) Payload
MSL)
4.) Walk Around
Altitude (ft
3.) Operations
4.5
0.5
2
1.5
0
1
-0.5
0.5
-1
0
50
100
150
200
250
Airspeed (knots)
0
50
100
150
Ve (knots)
Operational Velocity
100 kts
Stall Velocity @ 5000 ft MSL
and 85% GTOW
60 kts
Takeoff Velocity
75 kts
Landing Velocity
80 kts
18
200
1.) Introduction
2.) Mission &
Market
Lift Distribution
4.) Walk Around
5.) Payload
6.) Aircraft Sizing
7.) Aerodynamics
8.) Stability/Trim
9.) Propulsion
10.) Structures
11.) Cost
12.) Summary
• Ideal Elliptical Lift
(Too costly)
• Linear distribution
cost effective
• Still gives
acceptable
performance
19
(ft2/sec)
3.) Operations
2.) Mission &
Market
3.) Operations
4.) Walk Around
5.) Payload
6.) Aircraft Sizing
7.) Aerodynamics
8.) Stability/Trim
9.) Propulsion
Airfoil selection
• Considered 3
airfoils
– NASA NLF1015
– Liebeck
LNV109a
– NACA 642-415
(baseline)
10.) Structures
175
150
125
100
75
11.) Cost
12.) Summary
• Chose NLF-1015
– Superior L/D at
operating
conditions (Low
alpha)
Alpha Versus L/D
200
L/D
1.) Introduction
50
NLF1015
LNV109a
NACA 642-415
25
0
-5
20
-25
0
5
Alpha
10
15
1.) Introduction
2.) Mission &
Market
3.) Operations
4.) Walk Around
5.) Payload
6.) Aircraft Sizing
7.) Aerodynamics
8.) Stability/Trim
Drag Buildup
• Component CD0 build for major components
of aircraft
• CD0 - parasite drag on the aircraft
9.) Propulsion
10.) Structures
11.) Cost
12.) Summary
CD,misc
CD0,wing
CD0,tail
CD0,Fuselage
CD0
21
0.015
0.000635
0.000224
0.0017
0.0176
1.) Introduction
2.) Mission &
Market
Lift curve slope
3.) Operations
2
4.) Walk Around
5.) Payload
1.5
6.) Aircraft Sizing
7.) Aerodynamics
1
Cl
8.) Stability/Trim
9.) Propulsion
0.5
10.) Structures
LNV109a
NACA 642-415
11.) Cost
12.) Summary
NLF1015
0
-5
0
5
10
15
-0.5
alpha
Aerodynamic performance, lift, and drag
from XFoil at Mach number for cruise
22
1.) Introduction
2.) Mission &
Market
Longitudinal Stability Analysis
3.) Operations
4.) Walk Around
5.) Payload
6.) Aircraft Sizing
7.) Aerodynamics
8.) Stability/Trim
9.) Propulsion
10.) Structures
11.) Cost
• Static margin for a
fully loaded aircraft
34%
• Static margin with no
fuel 41%
12.) Summary
Xcg
CLα
Xac,wing
Xac,ht
Cmα
.467 %
.14
.46 %
.932%
-.048
Static
Margin
.343
(Percentages of Aircraft Length)
23
1.) Introduction
2.) Mission &
Market
3.) Operations
4.) Walk Around
5.) Payload
6.) Aircraft Sizing
7.) Aerodynamics
8.) Stability/Trim
9.) Propulsion
10.) Structures
11.) Cost
12.) Summary
Cruise Trim: V = 100 kts, q = 32.46 => C_L = .4467
24
1.) Introduction
2.) Mission &
Market
3.) Operations
4.) Walk Around
5.) Payload
6.) Aircraft Sizing
7.) Aerodynamics
8.) Stability/Trim
9.) Propulsion
10.) Structures
11.) Cost
12.) Summary
Lateral Trim
• Crosswind correction
– Capable of steady level flight in a
crosswind that is 30% of takeoff speed at
a 11.5o side slip angle with no more than
20o of rudder deflection.
• Final sizes:
– Rudder: cf/c = 0.8
– Aileron: cf/c = 0.2
25
1.) Introduction
2.) Mission &
Market
Engine Selection
3.) Operations
4.) Walk Around
5.) Payload
6.) Aircraft Sizing
• UAV Engines Ltd
– Model AR741
7.) Aerodynamics
8.) Stability/Trim
9.) Propulsion
Engine Specifications
10.) Structures
11.) Cost
Max Power [hp]
12.) Summary
Cruise RPM
7000
Engine weight [lbs]
23.5
Installed Weight w/ Generator [lbs]
48.2
40
Generator Capacity [V]
28
Generator Output [W]
1500
Fuel Type
Auto Gasoline
26
1.) Introduction
2.) Mission &
Market
3.) Operations
4.) Walk Around
5.) Payload
6.) Aircraft Sizing
7.) Aerodynamics
8.) Stability/Trim
9.) Propulsion
10.) Structures
11.) Cost
12.) Summary
Propeller Selection
• Helices Halter
– Model HH
yr7022fa
• Specifically
designed for the
AR741 Engine
• Fixed Pitch
• Beech Wood
Composite
27
Propeller Specifics
C_Root [in]
Diameter [ft]
Advance Ratio
Coefficient of Power
Taper Ratio
Activity factor
Blades
Twist [deg]
Propeller Efficiency
2.5
2.5
0.675
0.083
0.52
80
2
22.5
0.824
1.) Introduction
2.) Mission &
Market
3.) Operations
4.) Walk Around
5.) Payload
6.) Aircraft Sizing
7.) Aerodynamics
8.) Stability/Trim
9.) Propulsion
10.) Structures
11.) Cost
12.) Summary
Material Selection
• Al-2024 for the fuselage
and Al-7075 landing gear.
• Aluminum inexpensive,
$3-4/lb
• Strong (E = 106 psi) and
light
• Resists corrosion and
has good fracture
toughness properties
• AS4/3501 -6 Carbon
Epoxy for the wing and tail
skin
Mechanics of Materials, James Gere
28
Weight Statement
1.) Introduction
2.) Mission &
Market
4.) Walk Around
5.) Payload
6.) Aircraft Sizing
7.) Aerodynamics
8.) Stability/Trim
9.) Propulsion
10.) Structures
11.) Cost
12.) Summary
Weight (lb)
Weight (lb)
3.) Operations
Airframe Structure
Wing
Fuselage
V-Tail
Nacelles
Landing gear
Total
Operating Items
25
25
Unusable Fuel and Oil
Fuel
Payload
8
5
7
70
Propulsion
Engines
Fuel Systems
Total
Fixed Equipment
Hydraulics
Electrical
Avionics
Flight Controls
Total
1
39
Lidar
CCNS
Camera
13
9
20
Total
42
48
3
51
3
15
12
5
35
29
Total Component
Empty Weight
Fuel
Installed Payload
Total
Weight (lb)
155
40
60
255
1.) Introduction
2.) Mission &
Market
3.) Operations
4.) Walk Around
5.) Payload
6.) Aircraft Sizing
7.) Aerodynamics
8.) Stability/Trim
9.) Propulsion
10.) Structures
11.) Cost
12.) Summary
Reliability and Maintainability
• Minimal Maneuvers
• Steady Static Margin
• Minimal Parts
– Non-retractable Landing Gear
– Few Payload Parts
• Highly Reliable Data from Sensors
30
1.) Introduction
2.) Mission &
Market
3.) Operations
4.) Walk Around
5.) Payload
6.) Aircraft Sizing
7.) Aerodynamics
Cost Analysis Life-Cycle
Break Down
Production Cost
RDT&E
Cost Per Aircraft
Break Even Point
Cost
$50,000.00
$993,000.00
$62,600.00
80 UAVs @ 5 years
8.) Stability/Trim
9.) Propulsion
10.) Structures
11.) Cost
12.) Summary
Operation & Maintenance cost (per year)
Operation Cost Per Day
Cost Per Mile (1600 Miles of Pipeline)
$154,000.00
$428.00
$0.27
• Modified around DAPCA IV Cost Model
• Scaled to a UAV application
• Analysis based off of Trans-Alaskan Pipeline
Customer
31
1.) Introduction
2.) Mission &
Market
Summary
• Future Work
3.) Operations
4.) Walk Around
– More Structural
Analysis
– CFD Analysis
– More Research In
Operation Costs
5.) Payload
6.) Aircraft Sizing
7.) Aerodynamics
8.) Stability/Trim
9.) Propulsion
10.) Structures
11.) Cost
12.) Summary
Parameter
Gross Weight [lbs]
Endurance [hrs]
Takeoff Length [ft]
Payload Capability Installed [lbs]
Loiter Velocity [kts]
32
Targets
300
24
500
30
150
Threshold
500
12
1500
50
100
Current
255
14
936
60
100
1.) Introduction
2.) Mission &
Market
3.) Operations
4.) Walk Around
5.) Payload
6.) Aircraft Sizing
7.) Aerodynamics
8.) Stability/Trim
9.) Propulsion
10.) Structures
Questions?
11.) Cost
12.) Summary
33