Transcript Document
1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload Oculus Superne 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim 9.) Propulsion 10.) Structures 11.) Cost 12.) Summary Andy Cottle Lin Haack Brian Roth Jeff Studtman 1 Sean Duncan Afzaal Hassan Dave Stinson Justin Wheeler 1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim 9.) Propulsion 10.) Structures 11.) Cost 12.) Summary CoDR Overview • Introduction • Mission Statement & Market • Operations • Walk Around • Payload and Capabilities 2 • • • • • • • Aircraft Sizing Aerodynamics Stability/Trim Propulsion Structures Cost Analysis Summary 1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim 9.) Propulsion 10.) Structures 11.) Cost 12.) Summary Mission Statement • To provide a multi-service UAS which acts as the primary detection method for third party infringement of pipelines, performs power-line equipment inspection, and detects threats to forested areas. The system will also facilitate a rapid response in the event of a complete system failure or natural disaster. 3 1.) Introduction 2.) Mission & Market Target Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim 9.) Propulsion 10.) Structures 11.) Cost 12.) Summary • Business Plan • Target Customers Mission • Power Line • Pipeline • Forest Monitoring • DOT • NPS • Private Oil/Gas Companies 4 Customer Attributes 1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around • Patrolling the Right-of- 5.) Payload 6.) Aircraft Sizing Way 7.) Aerodynamics 8.) Stability/Trim – Third Party Infringement 9.) Propulsion 10.) Structures • Constant Coverage 11.) Cost 12.) Summary • Cost Reduction • Safety Factors 5 1.) Introduction 2.) Mission & Market Engineering Requirements 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim 9.) Propulsion 10.) Structures 11.) Cost 12.) Summary Engineering Attributes GPS Accuracy Number of Operators Sense and Avoid Accuracy Engine Efficiency Communication Relay Time Empty Weight Number of Systems Operational Altitude Endurance Importance (Absolute) 243 Improtance (Relative) 10.90% 225 10.09% 211 9.47% 201 9.02% 190 8.52% 162 7.27% 162 7.27% 134 6.01% 124 5.56% Payload Capability 123 5.52% 118 5.29% 107 4.80% 93 87 4.17% 3.90% Time between Overhauls Operational Speed Stall Speed T/O Length 6 1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim 9.) Propulsion 10.) Structures 11.) Cost 12.) Summary Operation Profile • Type of Equipment – Ground Stations – Relay Stations – UAV • Takeoff/Landing on Rough Airfield • Operate from 1000 ft (AGL) • Observe & Transmit to Local Relay Stations • Relay Stations Transmit Information Back to Operator • Number and Frequency of UAV Flight Completely Customer Defined 7 1.) Introduction 2.) Mission & Market Walk Around 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim 9.) Propulsion 10.) Structures 11.) Cost 12.) Summary 8 1.) Introduction 2.) Mission & Market Internal Walk Around 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim 9.) Propulsion 10.) Structures 11.) Cost 12.) Summary 9 1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim Sensors • LIDAR (Laser Imaging Detection and Ranging) – Corridor Mapping – Land Surveying – Vegetation Growth / Density LiteMapper 5600 components Airborne Lidar Terrain Mapping System 9.) Propulsion 10.) Structures 11.) Cost • IR/Visual Camera - Thermal Imaging - Video Tracking - Detailed Pictures 12.) Summary 10 Payload Requirements 1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around LIDAR CCNS IR / Visual Camera Total 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics Power Consumption W hp 30 0.04 25 0.034 100 0.134 155 0.21 Weight (lbs) 13 9 20 42 Dimensions (ft) 1.8x.66x.71 .82x.69x.43 .66(d)x1.1(h) 1.5 ft 3 17 N/A N/A N/A N/A N/A 1500 2 8.) Stability/Trim Installation Weight (40% of Total Payload Weight) Power From Alternator 9.) Propulsion 10.) Structures 11.) Cost 12.) Summary • LIDAR • – Operates Optimally at 650-1300ft AGL – Used Only During Inspection IR / Visual Camera – Runs Throughout Mission – @ 1000 ft AGL • 271,212 ft2 – @ 12 x Zoom • 1462 ft2 11 1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim 9.) Propulsion 10.) Structures 11.) Cost 12.) Summary Sizing Information and Assumptions • Sizing Code: Avid ACS v4.1 • Equation Sets – General Aviation Component Weight Equations – Tail Volume Coefficient • Fixed Engine – Weight – Horsepower 12 1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim 9.) Propulsion 10.) Structures 11.) Cost 12.) Summary Carpet Plot Constraints and Inputs • Constraints – 925 ft takeoff constraint (ground roll + 50 ft obstacle clearance) – 550 ft landing constraint – Stall speed, ceiling and 2g maneuver not influential 13 CLmax 1.5 Cruise altitude [ft] MSL 5000 Velocity [kts] 100 Range [n.m.] 1300 Payload Weight [lbs] 60 Engine Weight [lbs] 48 Power [hp] 40 Propeller Diameter [ft] 2.5 Carpet Plot 1.) Introduction 2.) Mission & Market 268 3.) Operations W/S = 18 [lbs/ft2] 4.) Walk Around Sto = 925 7.) Aerodynamics 8.) Stability/Trim 9.) Propulsion 10.) Structures 11.) Cost 12.) Summary Gross Take Off Weight [lbs] 5.) Payload 6.) Aircraft Sizing Feasible area 266 SL = 550ft 264 W/S = 20 [lbs/ft2] 262 W/S = 22 [lbs/ft2] 260 258 AR = 16 256 AR = 14 254 AR = 12 Design Point 252 AR = 10 250 Wing Loading [lbs/ft2] AR =10 AR = 12 AR = 14 AR = 16 Landing Constraint Take Off Constraint 14 1.) Introduction 2.) Mission & Market 3.) Operations Sizing Code Output 4.) Walk Around Gross Weight [lbs] 255 5.) Payload W/S 20.3 6.) Aircraft Sizing 7.) Aerodynamics Aspect Ratio 8.) Stability/Trim Wing Area [ft2] 12.55 Endurance [hrs] 14.388 Take off Distance [ft] 915.6 Landing Distance [ft] 537.7 9.) Propulsion 10.) Structures 11.) Cost 12.) Summary 10 Fuel Weight [lbs] 39 L/D 13 Power/Weight [hp/lbs] ηp 15 0.15 0.821 1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim 9.) Propulsion 10.) Structures 11.) Cost 12.) Summary 16 1.) Introduction 2.) Mission & Market Compliance Matrix 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim 9.) Propulsion 10.) Structures 11.) Cost 12.) Summary Parameter Gross Weight [lbs] Payload Capability Installed [lbs] Endurance [hrs] SFC at Cruise [lb/bhp/hr] Operational Altitude [ft AGL] Loiter Velocity [kts] Stall Speed [kts] Takeoff Length w / 50ft obstacle [ft] GPS Accuracy [in] Propeller Efficiency Number of Operators Communication Relay Time [secs] Sense and Avoid Accuracy [ft] Time between Overhauls [hrs] 17 Targets 300 30 24 0.4 1000 150 30 500 4 0.9 2 5 1 2000 Threshold 500 50 12 0.6 2000 100 40 1500 20 0.7 4 10 5 750 Current 255 60 14 0.48 1000 100 60 936 4 0.82 2 600 Performance 1.) Introduction 2.) Mission & Market 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim 9.) Propulsion 10.) Structures 11.) Cost 12.) Summary x 10 Flight Envelope 4 V-n diagram 2 4 n=1 1.5 3.5 3 1 n=2 2.5 n 5.) Payload MSL) 4.) Walk Around Altitude (ft 3.) Operations 4.5 0.5 2 1.5 0 1 -0.5 0.5 -1 0 50 100 150 200 250 Airspeed (knots) 0 50 100 150 Ve (knots) Operational Velocity 100 kts Stall Velocity @ 5000 ft MSL and 85% GTOW 60 kts Takeoff Velocity 75 kts Landing Velocity 80 kts 18 200 1.) Introduction 2.) Mission & Market Lift Distribution 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim 9.) Propulsion 10.) Structures 11.) Cost 12.) Summary • Ideal Elliptical Lift (Too costly) • Linear distribution cost effective • Still gives acceptable performance 19 (ft2/sec) 3.) Operations 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim 9.) Propulsion Airfoil selection • Considered 3 airfoils – NASA NLF1015 – Liebeck LNV109a – NACA 642-415 (baseline) 10.) Structures 175 150 125 100 75 11.) Cost 12.) Summary • Chose NLF-1015 – Superior L/D at operating conditions (Low alpha) Alpha Versus L/D 200 L/D 1.) Introduction 50 NLF1015 LNV109a NACA 642-415 25 0 -5 20 -25 0 5 Alpha 10 15 1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim Drag Buildup • Component CD0 build for major components of aircraft • CD0 - parasite drag on the aircraft 9.) Propulsion 10.) Structures 11.) Cost 12.) Summary CD,misc CD0,wing CD0,tail CD0,Fuselage CD0 21 0.015 0.000635 0.000224 0.0017 0.0176 1.) Introduction 2.) Mission & Market Lift curve slope 3.) Operations 2 4.) Walk Around 5.) Payload 1.5 6.) Aircraft Sizing 7.) Aerodynamics 1 Cl 8.) Stability/Trim 9.) Propulsion 0.5 10.) Structures LNV109a NACA 642-415 11.) Cost 12.) Summary NLF1015 0 -5 0 5 10 15 -0.5 alpha Aerodynamic performance, lift, and drag from XFoil at Mach number for cruise 22 1.) Introduction 2.) Mission & Market Longitudinal Stability Analysis 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim 9.) Propulsion 10.) Structures 11.) Cost • Static margin for a fully loaded aircraft 34% • Static margin with no fuel 41% 12.) Summary Xcg CLα Xac,wing Xac,ht Cmα .467 % .14 .46 % .932% -.048 Static Margin .343 (Percentages of Aircraft Length) 23 1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim 9.) Propulsion 10.) Structures 11.) Cost 12.) Summary Cruise Trim: V = 100 kts, q = 32.46 => C_L = .4467 24 1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim 9.) Propulsion 10.) Structures 11.) Cost 12.) Summary Lateral Trim • Crosswind correction – Capable of steady level flight in a crosswind that is 30% of takeoff speed at a 11.5o side slip angle with no more than 20o of rudder deflection. • Final sizes: – Rudder: cf/c = 0.8 – Aileron: cf/c = 0.2 25 1.) Introduction 2.) Mission & Market Engine Selection 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing • UAV Engines Ltd – Model AR741 7.) Aerodynamics 8.) Stability/Trim 9.) Propulsion Engine Specifications 10.) Structures 11.) Cost Max Power [hp] 12.) Summary Cruise RPM 7000 Engine weight [lbs] 23.5 Installed Weight w/ Generator [lbs] 48.2 40 Generator Capacity [V] 28 Generator Output [W] 1500 Fuel Type Auto Gasoline 26 1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim 9.) Propulsion 10.) Structures 11.) Cost 12.) Summary Propeller Selection • Helices Halter – Model HH yr7022fa • Specifically designed for the AR741 Engine • Fixed Pitch • Beech Wood Composite 27 Propeller Specifics C_Root [in] Diameter [ft] Advance Ratio Coefficient of Power Taper Ratio Activity factor Blades Twist [deg] Propeller Efficiency 2.5 2.5 0.675 0.083 0.52 80 2 22.5 0.824 1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim 9.) Propulsion 10.) Structures 11.) Cost 12.) Summary Material Selection • Al-2024 for the fuselage and Al-7075 landing gear. • Aluminum inexpensive, $3-4/lb • Strong (E = 106 psi) and light • Resists corrosion and has good fracture toughness properties • AS4/3501 -6 Carbon Epoxy for the wing and tail skin Mechanics of Materials, James Gere 28 Weight Statement 1.) Introduction 2.) Mission & Market 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim 9.) Propulsion 10.) Structures 11.) Cost 12.) Summary Weight (lb) Weight (lb) 3.) Operations Airframe Structure Wing Fuselage V-Tail Nacelles Landing gear Total Operating Items 25 25 Unusable Fuel and Oil Fuel Payload 8 5 7 70 Propulsion Engines Fuel Systems Total Fixed Equipment Hydraulics Electrical Avionics Flight Controls Total 1 39 Lidar CCNS Camera 13 9 20 Total 42 48 3 51 3 15 12 5 35 29 Total Component Empty Weight Fuel Installed Payload Total Weight (lb) 155 40 60 255 1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim 9.) Propulsion 10.) Structures 11.) Cost 12.) Summary Reliability and Maintainability • Minimal Maneuvers • Steady Static Margin • Minimal Parts – Non-retractable Landing Gear – Few Payload Parts • Highly Reliable Data from Sensors 30 1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics Cost Analysis Life-Cycle Break Down Production Cost RDT&E Cost Per Aircraft Break Even Point Cost $50,000.00 $993,000.00 $62,600.00 80 UAVs @ 5 years 8.) Stability/Trim 9.) Propulsion 10.) Structures 11.) Cost 12.) Summary Operation & Maintenance cost (per year) Operation Cost Per Day Cost Per Mile (1600 Miles of Pipeline) $154,000.00 $428.00 $0.27 • Modified around DAPCA IV Cost Model • Scaled to a UAV application • Analysis based off of Trans-Alaskan Pipeline Customer 31 1.) Introduction 2.) Mission & Market Summary • Future Work 3.) Operations 4.) Walk Around – More Structural Analysis – CFD Analysis – More Research In Operation Costs 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim 9.) Propulsion 10.) Structures 11.) Cost 12.) Summary Parameter Gross Weight [lbs] Endurance [hrs] Takeoff Length [ft] Payload Capability Installed [lbs] Loiter Velocity [kts] 32 Targets 300 24 500 30 150 Threshold 500 12 1500 50 100 Current 255 14 936 60 100 1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim 9.) Propulsion 10.) Structures Questions? 11.) Cost 12.) Summary 33