Extra Dimensions, Cosmology and the end of Space and Time

Download Report

Transcript Extra Dimensions, Cosmology and the end of Space and Time

Physical Constraints on
Gauss-Bonnet Dark Energy
Cosmologies
Ishwaree Neupane
University of Canterbury, NZ
DARK 2007, Sydney September 25, 2007
Recently, there has been a renewal of
Interest in scenarios that propose
alternatives or corrections to
Einstein’s gravity.
The proposals are of differing origin as
well as motivations: some are based on
multi -dimensional theories, others on
scalar-curvature couplings.
Gauss-Bonnet Gravity: Motivations
Gauss-Bonnet gravity is motivated by
 the stability and naturalness of the models,
 uniqueness of a Lagrangian in higher dimensions,
 the low-energy effective string actions (heterotic string),
Leff 
1
2 2
R
S  S
(S  S ) 2
Re S 
3
T T
1
1
2 2
2 


(Re
S
)
R

(Im
S
)

R
GB
 R
2
8
(T  T ) 8
2
g s2
e ,   stringdilaton
Im S    pseudoscalar axion
Re T  e
2

1
(compactification radius) 2
Dark energy from stringy gravity
One-loop corrected (heterotic) superstring action

 R
2 
2 
S g  d x  g  2  V ( ,  )  ( )  ( ) 2   f ( )   ( ) R GB

2
2
 2


4
modulus

a Brans-Dicke-like
runway dilaton

(a)
2
3
a
a  24H
2

2
( H  H 2 )  R 2  4R ab Rab  R abcd Rabcd  RGB
Gauss-Bonnet
curvature density
In a known example of string compactification
f ( )  f 0
 ( / 0 )
e
2
 .....  ( )  ln(2)  cosh(  /  0 )  ......
3
No good reason to omit the scalar-curvature couplings
apart from complication
How can current observations
constrain such models?
The simplest Example: A fixed modulus &
no Gauss-Bonnet coupling

This simplifies the theory a lot

 R
2
S  d x  g  2  V ( )  ( ) 
2
 2


Define
x 
2


( / H )
2
y   2 (V / H 2 )

EOMs
  H/ H
2
4
2
2
1 2
w  1 
  q
3
3 3
Effective Equation of State
y  3   , x  
sufficiently simple
x=0 and y=3 is a de Sitter fixed point : Lambda-CDM
Too Many choices
Quadratic
Exponential potential
1 2 2
V ( )  V0  m   ...
2
V ( )  V0
Inverse power-law
Axion potential


V ( )   C  cos

 0

4
e
  ( / 0 )




4  0



V ( )     ,   2
 
The issue may not be simply to achieve the dark
energy equation of state
w  1
DE
For the model to work the scalar field must relax its
potential energy after inflation down to a sufficiently
low value: close to the observed of dark energy
Gauss-Bonnet driven effective dark energy
1
1
 R
2 
S grav  d 4 x  g  2  V ( )  ( ) 2  f ( ) R GB

2
8
 2




(a)
2
3
a
a  24H
2

2
( H  H 2 )  RGB
 R 2  4R ab Rab  R abcd Rabcd
GB term is topological in 4D, and, if coupled, no Ghost for Minkowski background.
Cosmology requires FRW, Inflation  non-constant scalar coupling
  ln[a(t )]  const
Number of e-folds primarily
depends on the field value
f ( )  f 0  f1 e  ( / 0 ) ,
V( ) 
GB gravity may be a solution to the
dark energy problem, but a large
scalar coupling strength is required
2(1-  )
3 4 f
'
 V0 e   ( / 0 )
  1  3 ,    202 / 2
Crossing the barrier of cosmological constant
Equation of state parameter for the potential
From top to bottom
0  4, 5, 6, 8, 10
V( )  V0 e 2 /0
Dynamics may be well behaved, but
An exact solution:
Let
1
2
2
( )  V ( )  f ( ) RGB  ........  (3   ) H ( )
8
Ansatz
 N ( )
f ( ) H  u( )  u0e
2
N  ln[a(t )]  const
Scalar spectral index
ns  1   4 H  2 H
Nature of the dark energy
Is
CMB wDE  1
+
preferred?
Null dominant energy
condition : energy
LSS
doesn’t propagate
outside the light cone
A model with
. 2
w  1
1
L     V ( )
2
Tegmark et al. 2004
Gauss-Bonnet corrections: No need to
introduce a wrong sign kinetic term
wDE  1  wDE  1
A couple of remarks:
wDE  weff
1.
w DE 
.
p DE
weff  1 
 DE
2 H
1 2


 q
2
3H
3 3
wDE does not depend on the equation of state of other
fluid components, while weff
definitely does
2.
Dark energy or cosmological constant problem is
a cosmological problem: Almost every model of
scalar gravity behaves as Einstein’s GR for
.

H
 0.0 1
The Simplest Potentials
V ( )  V0 e
 / mP
,
 / mP
f ,  f 0 e
Perhaps too naïve: The slopes of the potentials
considered in a post inflation scenario are too large to
allow the required number of e-folds of inflation
The above choices hold some validity
as a post-inflation approximation
Dashed lines (SNe IA plus CMBR shift parameter)
Shaded regions (including Baryon Acoustic Oscillation scale)
Koivisto & Mota hep-th/0609155
A non-minimally coupled scalar field
S  S grav S matter

 


S m  S A 2 ( ), m  d 4 x  g A 4 ( ) ( m   rad   s )
d ln A( )
Q
d
Local GR constraints on Q and its derivatives
(Damour et al. 1993, Esposito-Farese 2003)

2
2
 mPl
Q2
dQ
 4 10 ,   mPl
 4.5
d
5
Within solar system and laboratories distances: (dG / dt) / G
12 years
is less than
10
d ln A( )
Q
d
For the validity of weak equivalence principle
.


    0.8, Q ~
 5.10-5
H

Damour et al. gr-qc/0204094 (PRL)
Crossing of w = -1?
In the absence of GB-scalar coupling, a crossing between nonphantom w  1 and phantom cosmology w  1 is unlikely.
A smooth progression to


V ( )  H 2 ( )  0  1e   ,
  9,
  2 / 3,
 0  108
w  1
f ( )  e 
Ghost and Superluminal modes

One may also consider a metric spacetime under quantum
effect: perturbed metric about a FRW background
A gauge invariant quantity:
so-called a comoving perturbation
S linear
H
  



D(t)

2 


 dt a - C(t)  2   
a



3
No-ghost and stability conditions:
C (t ), D(t )  0
0  Ck2  1
Speed of
propagation
C k2
D (t )

C (t )
Propagation speed of a scalar mode
..
 [4 (1   )  f   ]
2
cR  1 
[2 (1   ) x 2  3 2 ](1   )
2
f,  f 0 e  ..., V ( )  V0 e  ....
  2 / 3 and  12, 8, 3, 2/3 (left to right)
GB     f H
Propagation speed for a tensor mode
  2 / 3 and  12, 8, 3, 2/3 (left to right)

f ,  f 0 e
 ..., V ( )  V0 e

 ....
..
c T2

1 f
.
1 f H
Observing the effects of a GB coupling
The growth of matter fluctuations
GB     f H
~



  2H  4G m

f
~
  
G  G 1  3GB 

2


H 
f



GB 



 m

m
is the matter
density contrast
12
| Gnow  Gnucleo | / Gnow (t now  t nucleo )  10
~
dG / dt
~  0.01 H 0
G
 
'

yr
1
~ O(0.1)
H
f ( ) ~ e / mP
 ~ O(1)
Growth of matter perturbations is
  
   

3 m 
     1  q1 
 GB 
 
 
4 


  GB   
With the inputs  m  0.26, q  -0.6 the observational
limit on growth factor

 0.51 0.1

implies that |  GB | 0.2 on large cosmological scales
Summary
 Gauss-Bonnet modification of Einstein’s gravity can easily
account for an accelerated expansion with quintessence,
cosmological constant or phantom equation-of-state
 The scalar-curvature coupling can also trigger onset
of a late dark energy domination with wDE  1
 The model to be compatible with astrophysical observations, the
GB dark energy density fraction should not exceed 15%.
 The solar system constraints, due to a small fractional

f  
anisotropic stress

  


 1 
can be more stronger

5
 2GB 1 


10

H   2
f  

