Transcript Slide 1
Bioelectrocatalysis Arkady A. Karyakin Faculty of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russia Bioelectrocatalysis is an acceleration of electrode reactions by biological catalysts Enzymes Whole cells Applications of bioelectrocatalysis Fuel electrodes (biofuel cells) Biosensors Electrosysthesis Enzyme bioelectrocatalysis BIOELECTROCATALYSIS S2 P2 How to involve enzymes in bioelectrocatalysis? Use of mediators: Substrate Oxidoreductase M ox M red Electrode Direct bioelectrocatalysis: S -e Oxidized Substrate P Direct bioelectrocatalysis if electrochemistry is determined by the catalyzed reaction or/and redox activity of biocatalyst Oxidase catalysis Oxidase Analyte O2 Oxidized Analyte H2O2 Redox activity of oxidases H N O N N N H 2e N 2H+ N N H H O O N O E ≈ -0.064 В (NHE) O HN O N N CH3 N CH3 CH2 NH2 HO C H HO C H N HO C H O H2C O N O P O P O CH2 ONa ONa HO N O N OH FAD Mediated bioelectrocatalysis – II generation biosensors Glucose Oxidase Glucose + Fc Gluconic acid Fc Fe Electrode A. E. G. Cass, G. Davis, G. D. Francis, H. A. O. Hill, W. G. Aston, I. J. Higgins, E. V. Plotkin, L. D. L. Scott, and A. P. F. Turner, Analytical Chemistry 56, 667-671 (1984). Glucose tests • Accu-Chek Complete BG System(Boehringer Mannheim) • Accu-Chek Easy(Boehringer Mannheim) • Accu-Chek Instant(Boehringer Mannheim) • Accu-Chek Instant Plus(Boehringer Mannheim) • Autolet® II Clinisafe(Owen Mumford) • Autolet® Lite Starter Pack(Owen Mumford) • Blood Glucose Strips(Roche) • Exatech®(Medisense) • Fingerstix Lancets(Bayer) • Glucofilm™ Test Strips(Bayer) • Glucose Control Solution(Roche) • Glutose®(Roche) • Lifescan One Touch® Basic™ System(Johnson & Johnson) • Medipoint Blood Lancets(Medipoint) • Monolet Lancet(Kendall-Sherwood) • Soft-Touch® II(Boehringer Mannheim) • Softclix(Roche) • Unilet Long-Body™ Lancets(Owen Mumford) • Unistik™-2(Owen Mumford) Mediated bioelectrocatalysis – II generation biosensors +/2+ Os +/2+ Os +/2+ Os Glucose +/2+ Os _ Os e hydrogel +/2+ Gluc. ac. B.A. Gregg, A. Heller. Anal. Chem. 62 (1990) 258 Wiring of glucose oxidase E = -0.195 mV (Ag|AgCl) Heller, A. Physical Chemistry Chemical Physics 2004, 6, 209-216. Glucose test Therasense: 0.3 µL of blood Dehydrogenase catalysis Dehydrogenase Substrate + NAD(P) > 500 enzymes Product NAD(P)H NAD+|NADH redox reaction O O C C NH2 N+ R 2eH+ NH2 N R the lowest potential in aerobic organisms; on bare electrodes the overvoltages exceed 1 Volt. N H3C N H3C N CH3 CH3 S N H3C N H3C H2N Methylene Blue Methylene Green S NO2 N CH3 CH3 N S H2C N H2N S H2C N H2N O H2C N H2N N Toluidine Blue N CH3 CH3 Brilliant Cresyl Blue N CH2 CH3 CH2 CH3 Neurtal Red Azur A N CH3 CH3 H N H2N S Thionine NH2 N CH3 CH3 Electropolymerized azines: a new class of electroactive polymers Methylene Blue Toluidine Blue Neutral Red 2 0.1 mA/cm 0.1mA/cm 2 0.5 mA/cm -0.8 -0.4 0.8 E, V -0.4 1.2 0.6 E, V 2 0.4 0.8 E, V Hypothesis on polyazine structure CH3 H3C N S H N N CH 3 N H3C N S N H3C N H3C S N CH3 CH3 N CH3 CH3 A.A. Karyakin, E.E. Karyakina, H.-L. Schmidt. Electroanalysis (1999) 11 149. + NAD Catalysis of reduction and NADH oxidation j, A cm -2 0.1 mM NADH 1 0 -0.60 -0.55 E, V -1 0.1 mM NAD+ potential j, A cm -2 Equilibrium + NAD |NADH 1.0 0.5 0.0 -0.60 -0.55 -0.50 E, V -0.5 A.A.Karyakin, Yu.N.Ivanova, E.E.Karyakina Electrochem. Commun. (2003) 5, 677-80 Direct enzyme bioelectrocatalysis Protein electroactivity Cytochrome C S.R. Betso, M.H. Klapper, L.B. Anderson. J. Am. Chem. Soc. 94 (1972) 8197-204. M.R. Tarasevich, V.A. Bogdanovskaya. Bioelectrochem. Bioenerg. 3 (1976) 589-95. M.J. Eddowes, H.A.O. Hill. J. Chem. Soc. , Chem. Commun. (1977) 71 P. Yeh, T. Kuwana. Chem. Lett. (1977) 1145-8 Niki K, Yagi T, Inokuchi H, Kimura K. JACS 101 (1979) 3335-40. gold Promoters for protein electroactivity N N ē ē M.J. Eddowes, H.A.O. Hill. J. Chem. Soc. , Chem. Commun. (1977) 71 P. Yeh, T. Kuwana. Chem. Lett. (1977) 1145-8 Direct bioelectrocatalysis O2 4H 4e 2H 2O Laccase Est = 1.2 V Berezin I. V., Bogdanovskaya V. A., Varfolomeev S.D., M.R. Tarasevich, A.I Yaropolov. Dokl.Akad.Nauk SSSR (Proc. Acad. Sci.) 240 (1978) 615-618 Enzymes for direct bioelectrocatalysis Iron-sulfur clusters HEM PQQ Others Direct bioelectrocatalysis H 2O2 2H 2e 2H 2O Peroxidase A.I Yaropolov, V. Malovik, Varfolomeev S.D., Berezin I. V. Dokl.Akad.Nauk SSSR (Proc. Acad. Sci.) 249 (1979) 1399-401 Direct bioelectrocatalysis 2H 2e H 2 Hydrogenas e A.I. Yaropolov, A.A. Karyakin, S.D. Varfolomeyev, I.V. Berezin. Bioelectrochem. Bioenerg. 12 (1984) 267-77 BIOELECTROCATALYSIS by Th. roseopersicina hydrogenase H 2 2e 2H 2H 2e H 2 (1), (3) - H2 ; (2) - Ar (3) - without active enzyme (Yaropolov A.I., Karyakin A.A., Varfolomeyev S.D., Berezin I.V. Bioelectrochem. & Bioenergetics 12 (1984) 267-277) Equilibrium hydrogen potential (100% energy conversion) Nernst’ equation for H2 2 H 2 e How to involve oxidases in bioelectrocatalysis? • surface pre-treatment; • using of promoters; • surface design by conducting polymers. Fundamentals of direct bioelectrocatalysis Investigations of enzyme redox centers Redox switching of enzyme activity Direct bioelectrocatalysis by intact cells Principal structure of bacterial cells Inorganic ion reducing bacteria Shewanella putrefaciens Lactate Insoluble Fe3+ as electron donor as electron acceptor Electroactivity of Shewanella putrefaciens A – air exposed cells B – air exposed with lactate C – no air, but at + 200 mV D – at +200 mV with lactate Kim, B. H.; Ikeda, T.; Park, H. S.; Kim, H. J.; Hyun, M. S.; Kano, K.; Takagi, K.; Tatsumi, H. Biotechnology Techniques 1999, 13, 475-478. Geobacter sulfurreducens on graphite electrode Bond, D. R.; Lovley, D. R. Applied And Environmental Microbiology 2003, 69, 1548. Advantages of bioelectrocatalysis: • a possibility for electrochemistry of complex organic reactions; • high efficiency at room temperature and moderate overvoltages; • achieve high specificity. Disadvantages: • inherent instability, • large dimensions of biological catalysts.