Transcript Biofys

MEDT8002
Blood flow measurement by Doppler technique
Hans Torp
Institutt for sirkulasjon og medisinsk bildediagnostikk
Hans Torp
NTNU, Norway
Pulsed and continuous wave Doppler
• Dopplershift from moving scatterers
• Stocastic signal model
• Clutter filtering
• Spectrum analysis
• Two dimensional signal model
Ultralyd Doppler
Ultralyd probe
Lyden forandrer frekvens ved bevegelse
o
o
  

Bilens hastighet: 70 km/time ~ 6% av lyd-hastighet
1/12
Ét halvtone-trinn i 12-toneskalaen: 2
= 5.94 %
Endring i frekvens (turtall): 6% + 6% = 12 %
Hans Torp
NTNU, Norway
Fartskontroll på E6 ved Heggstadmoen
300
250
200
150
100
50
0
0
50
Motorsykkelens turtall 0.5*(f1+f2) = 140.3 Hz
Dopplerskift: +/- 9.55 Hz ~ +/- 6.8 %
Motorsykkelens fart: 340 * 6.8/100 *3.6 = 83.3 km/h
Fartsgrense = 80 km/h
100
150
frekvens [Hz]
200
250
300
Frekvensspekter før passering
Frekvensspekter etter passering
Ultralyd Doppler
Ultralyd probe
Dopplerskift
fd == fo v/c
+ fo v/c
= 2 fo v/c
Signal processing
for CW Doppler
fo
0
fo+fd
frequency
0 fd
frequency
Matlab: cwdoppler.m
Hans Torp
NTNU, Norway
Blood velocity calculated from
measured Doppler-shift
fd = 2 fo v cos() / c
v = c/2fo/cos() fd
Hans Torp
NTNU, Norway
fd :
fo :
v:
Dopplershift
Transmitted frequency
blood velocity
:
beam angle
c:
speed of sound (1540 m/s )
CW/PW Doppler blood flow meter
Blood velocity Mitral inflow
Velocity
time
Normal relaxation
Hans Torp
NTNU, Norway
PEDOF developed in Trondheim 1976
Delayed relaxation
Cardiac Doppler in Trondheim
Angelsen & Kristoffersen
Liv Hatle:  Clinical practice
PW&CW Dopper PEDOF - 1976
Holen
Velocity -> Pressure gradient
Continous Wave Doppler
Double transducer
CW
recieve
Pulsed Wave Doppler
Single transducer
PW
transmit
Range cell
ø
Artery
ø
Velocity
profile, v
Observation region in
overlap of beams
Matlab: pwdoppler.
Hans Torp
NTNU, Norway
Signal from all scatterers
within the ultrasound beam
Signal from a limited
sample volume
10-08/12pt
Signal from a large number of red blood cells
add up to a Gaussian random process
a)
Hans Torp
NTNU, Norway
b)
10-11/12pt
G ()
e
Power spectrum of the Doppler signal
represents the distribution of velocities

Hans Torp
NTNU, Norway
Doppler spektrum
Hans Torp
NTNU, Norway
Doppler spectrum analysis:
Different velocities separated in frequency
Nyquist limit in Pulsed wave Doppler
Nyquist-limit
Doppler spectrum
Subclavian Artery
Velocity waveform restored
by stacking
Tidsvindu-lengde ved spektralanalyse
Performance of the spectrum sonogram as a function of window length. Upper left: 150
points, upper right: 64 points, lower left: 32 points, and lower right: 16 points. The window
type is Hamming and the degree of overlap is 75% in all pictures.
Resolution in
Doppler spectrum analysis
Δv *ΔT = λ / 2
ΔT
Minimum dot area in the
spectrum display: Δv *ΔT
100
Ultrasound wavelength: λ
50
Δv
Doppler spectrum
Velocity resolution
Δv *ΔT = λ / 2
5 m/sec
Blood flow velocity
fo=2 MHz ~ λ = 0.76mm
ΔT = 10 msec
Δv = 3.6 cm/sec
~ 0.7 % of peak syst. velocity
10cm/sec
Myocardial velocity
fo=3.5 MHz ~ λ = 0.4 mm
ΔT = 20 msec
Δv = 2 cm/sec
~ 25 % of peak syst. velocity
Aliasing in pulsed wave Doppler
Velocity waveform restored
by baseline shift or stacking
Tracking Spectrum algorithm
Pulse no
1 2 .. …
Conventional spectrum
Hans Torp
NTNU, Norway
N
Pulse no
1 2 .. …
Tracking spectrum
N
Blood velocity spectrum
Subclavian Artery
100
50
-50
-100
Conventional spectrum
Tracking spectrum
PW Doppler
Tracking spectrum
CW Doppler
0.3m/s
2 m/s
.
5 m/s
Hans Torp
NTNU, Norway
What is the best pulse length?
Energy per pulse limited by
thermal index or ISPTA
Pulse
bandwidth B
Sample vol. size ~ pulse length ~1/ B
Thermal noise level ~ B
(matched filter)
Ultrasound pulse frequency [MHz]
SNR considerations PW Doppler
Blood signal spectral peak ~1/ B
Spectral SNR ~ 1/ B^2
Doppler shift frequency [kHz]
Power
(blood vessel larger than sample vol.)
Thermal noise
Double pulse length give + 6 dB SNR
Hans Torp
NTNU, Norway
Doppler shift frequency [kHz]
Summary spectral Doppler
• Complex demodulation give direction information of blood
flow
• Smooth window function removes sidelobes from cluttersignal
• PW Doppler suffers from aliasing in many cardiac
applications
• SNR increases by the square of pulse length in PW Doppler