Bayesian Concept Introduction

Download Report

Transcript Bayesian Concept Introduction

Pharmacometrics Introduction
Yaning Wang, Ph.D.
Team Leader, Pharmacometrics
Office of Clinical Pharmacology
Center for Drug Evaluation and Research
Food and Drug Administration
[email protected]
Disclaimer: My remarks today do not necessarily reflect the official views of FDA
11/13/2008
NONMEM Estimation Methods
[email protected]
1
Outline
• Issues and opportunities in drug development
• Model-based drug development
• Bayesian statistics and its relationship with
NONMEM
• NONMEM estimation methods
11/13/2008
NONMEM Estimation Methods
[email protected]
2
Issues in Drug Development
• Low efficiency
–
–
–
–
11/13/2008
NME IND = NDA <20% of time
Reported >50% failure rate in Phase 3 (Carl Peck, CDDS)
Decreased NME NDAs despite increased INDs
Cost per NME approved estimated at $1.7B
NONMEM Estimation Methods
[email protected]
3
Low Success Rate Across Different Diseases
Kola I, Landis J.Can the pharmaceutical industry reduce attrition rates? Nat.Rev.Drug.Disc. Aug 2004.
11/13/2008
NONMEM Estimation Methods
[email protected]
4
High Failure Rate Even in Late Development
Kola I, Landis J.Can the pharmaceutical industry reduce attrition rates? Nat.Rev.Drug.Disc. Aug 2004.
11/13/2008
NONMEM Estimation Methods
[email protected]
5
10-Year Trends of Major Submissions to FDA
11/13/2008
NONMEM Estimation Methods
[email protected]
6
Investment Escalation
Source: Windhover’s in Vivo: The Business & Medicine Report, Bain drug economics model, 2003
11/13/2008
NONMEM Estimation Methods
[email protected]
7
Various Initiatives
• National Institutes of Health (NIH)
– Roadmap initiative
• National Cancer Institute (NCI)
– Specialized Programs of Research Excellence (SPOREs)
• European Organization for the Treatment of Cancer
(EORTC)
– make translational research a part of all cancer clinical trials
• National Translational Cancer Research Network
– facilitate and enhance translational research in the United
Kingdom
• FDA
– Critical Path Initiative
11/13/2008
NONMEM Estimation Methods
[email protected]
8
2004 FDA Critical Path Initiative
Application of New Scientific
Knowledge to Drug Development:
•
•
•
Application of quantitative disease
models to drug development
Pharmacogenomics in drug
development
New imaging technologies may
contribute biomarkers in drug
development
http://www.fda.gov/oc/initiatives/criticalpath/
11/13/2008
NONMEM Estimation Methods
[email protected]
9
2006 FDA Critical Path Update
11/13/2008
NONMEM Estimation Methods
[email protected]
10
Model-Based Drug Development
“The concept of model-based drug development, in
which pharmaco-statistical models of drug efficacy and
safety are developed from preclinical and available
clinical data, offers an important approach to improving
drug development knowledge management and
development decision-making”
Adapted from Lewis B. Sheiner, “Learning vs Confirming in Clinical Drug
Development”, Clin. Pharmacol. Ther., 1997, 61:275-291.
11/13/2008
NONMEM Estimation Methods
[email protected]
11
Terminology
• Model-based drug development
–
–
–
–
–
Pharmacokinetics/Pharmacodynamics (PK/PD)
Modeling and simulation
Exposure-response
Quantitative clinical pharmacology
Quantitative disease and drug models
• Pharmacometrics-Pharmacometricians
• Areas involved: clinical pharmacology, statistics,
pathophysiology, biology, bioengineering
11/13/2008
NONMEM Estimation Methods
[email protected]
12
DRUG MODEL
PLACEBO/DISEASE MODEL
Surrogate
Morbidity#2
Mortality
Surrogate
0 2 4 6 8
6
30
Other races Male
0 10
140
200
TIME
80 120 160
Other races Female
Body Weight
TIME
% Compliance
0
20 40 60
0
80
Black Female
Surrogate
High dose
Low dose
PATIENT/CLINICAL
TRIAL MODEL
80 120 160
% Drop-out
2
4
150
0 50
400
200
0
100
200
Caucasian Female
80 120
180
Black Male
Disease
Drug
Trial
Models
Exposure
Surrogate
Exposure
TIME
100
200
Caucasian Male
Toxicity
Relative
Risk
Morbidity#1
QD
TID
Patient Population
11/13/2008
NONMEM Estimation Methods
[email protected]
13
Applications in FDA Review
• Exposure-response analysis of efficacy and safety data in NDA
review for the choice of dosing regimen (s)
• Dose adjustment in special populations (hepatic, renal, gender, age
and drug interactions) based on intersubject variability and
risk assessment
• Routine use of population PK and PD data analysis to understand
variability and to provide evidence for label claims
• Issuing guidance to assist the industry in using these tools
• Case studies
– Leveraging Prior Quantitative Knowledge to Guide Drug Development Decisions
and Regulatory Science Recommendations: Impact of FDA Pharmacometrics
During 2004-2006, Journal of Clinical Pharmacology (2008) 48: 146-157
– Impact of Pharmacometric Reviews on New Drug Approval and Labeling Decisions
- A Survey of 31 New Drug Applications Submitted Between 2005-2006, Clinical
Pharmacology and Therapeutics (2007) 81: 213-221
– Impact of Pharmacometrics on Drug Approval and Labeling Decisions - A Survey
of 42 New Drug Applications, The AAPS Journal, 7(3): E503-E512, 2005
11/13/2008
NONMEM Estimation Methods
[email protected]
14
Tools for Modeling and Simulation
•
•
•
•
•
•
•
11/13/2008
NONMEM (UCSF, Globomax)
SAS (SAS Institute Inc)
Splus (Insightful Corporation) or R (Free)
WinBUGS (MRC Biostatistics, Free)
ADAPT II (USC, Free)
WinNonLin/WinNonMix (Pharsight)
Trial Simulator (Pharsight)
NONMEM Estimation Methods
[email protected]
15
Basic Statistics
1.0
1.0
0.8
0.8
0.6
0.6
• Random Variable (Y)
0.4
0.4
– Discrete (gender, pain score)
– Continuous (body weight,
clearance)
0.2
0.2
0.0
0.0
0
1
0
1
0.020
rdn
0.02
0.015
• Distribution (histogram)
0.015
0.010
– Binomial
– Normal
– Lognormal
0.005
0.010
0.005
0.0
0.0
• Probability Function (P(Y=y))
20
40
40
60
60
80
80 100 120 140
100
120
140
160
rdn
0.4
0.5
0.6
0.6
0.5
0.4
0.3
0.2
0.1
0.0
0.0
0.1
0.2
0.3
– Probability Mass Function (PMF)
– Probability Density Function (PDF)
1
1
11/13/2008
NONMEM Estimation Methods
2
2
3
3
[email protected]
4
4
rdn
5
5
6
6
7
7
16
Normal Distribution

1
P(Y  y) 
e
2 
Y ~ N ( , )
2 2
0.04
2
( y  )2
0.03
0.04
0.02
P(y)
dens[order(rdn)]
0.03
0.02
0.01
Y~N(100, 102)
0.0
0.0
0.01
80
80
11/13/2008
NONMEM Estimation Methods
100
100
sort(rdn)
Y
120
120
[email protected]
17
Joint, Marginal and Conditional Probabilities
Survival
(Y2=0)
Not survival
(Y2=1)
P(Y1)
Early stage
(Y1=0)
Late stage
(Y1=1)
0.72
0.02
0.74
0.18
0.08
0.26
0.90
0.10
1.00
P(Y2)
Joint probability: P(Y1=0,Y2=0)=0.72
Marginal probability: P(Y1=0)= 0.90
Conditional probability: P(Y2=0|Y1=0)= 0.72/0.90=0.80
P(Y1  0)  P(Y1  0,Y2  0)  P(Y1  0,Y2  1)
Conditiona l 
11/13/2008
P (Y2  0 | Y1  0) 
P (Y1  0, Y2  0)
P (Y1  0)
Joint
Marginal
NONMEM Estimation Methods
[email protected]
18
Marginal and Conditional Probabilities
Survival
(Y2=0)
Not survival
(Y2=1)
P(Y1)
Early stage
(Y1=0)
Late stage
(Y1=1)
0.72
0.02
0.74
0.18
0.08
0.26
0.90
0.10
1.00
P(Y2)
Conditional probability:
P(Y2  0 | Y1  0)  0.72 / 0.9  0.8, P(Y2  0 | Y1  1)  0.02 / 0.1  0.2
Marginal probability:
P(Y2  0)  P(Y2  0,Y1  0)  P(Y2  0,Y1  1)
 P(Y2  0 | Y1  0)  P(Y1  0)  P(Y2  0 | Y1  1)  P(Y1  1)
 0.8  0.9  0.2  0.1  0.74
For continuous variables: P (Y2 )   P (Y1 , Y2 )dY1   P (Y2 | Y1 )  P (Y1 )dY1
Marginal probability: weighted average of conditional probability
11/13/2008
NONMEM Estimation Methods
[email protected]
19
Bayes’ Theorem
P (Y1 , Y2 )
P (Y2 | Y1 ) 
P (Y1 )
P (Y1 , Y2 )
P (Y1 | Y2 ) 
P (Y2 )
P(Y1 ,Y2 )  P(Y2 | Y1 )  P(Y1 )  P(Y1 | Y2 )  P(Y2 )
P (Y1 | Y2 )  P (Y2 )
P (Y2 | Y1 ) 
P (Y1 )
11/13/2008
NONMEM Estimation Methods
[email protected]
20
Parameter
• Unknown but fixed (Frequentist)
Y ~ N ( ,  )
2
• Unknown and random (Bayesian)
Y ~ N ( ,  )
2
 ~ N (  , )
2
(Prior distribution of )
Hyperparameters
• Unknown hyperparameters
– Hyperprior (Full Bayesian)
– Estimation (Empirical Bayesian)
11/13/2008
NONMEM Estimation Methods
[email protected]
21
Prior, Likelihood and Posterior
P (Y , )  P (Y |  )  P ( )  P ( | Y )  P (Y )
Likelihood
Posterior
Distribution
Marginal
Distribution
11/13/2008
P (Y |  )  P ( )
P ( | Y ) 
P (Y )
Prior
Distribution
P(Y )   P(Y |  )  P( )d
NONMEM Estimation Methods
[email protected]
22
Prior, Likelihood and Posterior
 ~ N (  , 2 )
Y |  ~ N ( ,  2 )
P (Y |  )  P ( )
P ( | Y ) 
P (Y )
1
1
2
2
1

/
n

 |Y ~ N(
y
,
)
1
1
1
1
1
1
 2
 2
 2
2
2
2
 /n 
 /n 
 /n 
11/13/2008
NONMEM Estimation Methods
[email protected]
23

Posterior
Likelihood
0.2
pdens
0.3
0.4
Shrinkage
0.1
Prior
n
0.0
2 
-10
0
ˆ | Y
Y
pdens
0.1
0.2
0.3
0.4
0.3
0.2
0.0
0.0
0.1
pdens
20
0.4

10
xp
-10
-10
0
10
0
10
20
20
xp
xp
11/13/2008
NONMEM Estimation Methods
[email protected]
24
A Simple Example
• Unknown parameter (): long-term systolic blood
pressure (SBP) of one particular 60-year-old female
• 4 measurements with a mean Y  130 and a standard
deviation =5
• Survey of the same population (60-year-old female):
mean SBP =120 and standard deviation =10
11/13/2008
NONMEM Estimation Methods
[email protected]
25
Estimation of 
• Frequentist
– Point estimate: ˆ  Y  130
– Interval estimate (95%CI)
Y  1.96

n
 130  1.96 * 2.5
• Bayesian
– Posterior distribution P(|Y)
– Posterior mean ˆ | Y  129.4
– 95% credible interval 129.4  1.96 * 2.4
11/13/2008
NONMEM Estimation Methods
[email protected]
26
0.15
Prior, Likelihood and Posterior
Individual parameter
(posterior)
Population Distribution
(prior)
0.0
0.05
pdens
0.10
Individual data
(likelihood)
80
100
120
140
160
Long-term systolic blood pressure
(SBP) of 60-year-old woman
xp
11/13/2008
NONMEM Estimation Methods
[email protected]
27
Population PK Variability
Sheiner, 1992
11/13/2008
NONMEM Estimation Methods
[email protected]
28
NONMEM and Bayesian
Dose
Yij 
 exp( ki  t ij )   ij
Vi
 ki 
2
2
p( yij |  i ,  ) ~ N ( f (t ij , i ),  )  i   
  k2i
p( i |  ,  ) ~ MVN p (  ,  )   
 k V
 ii
ki  TVk  exp( ki ) Vi  TVV  exp(Vi )
2


 ki
p( i |  ) ~ MVN p (0,  )


  
p( i |  ) ~ MVLN p (  ,  )
 ki Vi
 Vi 
 k 
 kiVi 
 



V2i 
 V 
 
2
ki Vi
Vi

 log(TVk ) 
   


log(TVV ) 


i: Posthoc estimate (Empirical Bayesian Estimate)
because , , 2 are all estimated based on MLE
11/13/2008
NONMEM Estimation Methods
[email protected]
29
A Simple Example
Dose ( k i )t ij
yij 
e
  ij  f (k ,i , t ij )   ij
V
 i ~ N (0,  2 )
 ij ~ N (0,  2 )
yij: the jth observation for the ith individual
Assume: only k is the unknown parameter to be estimated
Goal: search for the estimate, k̂ , that can minimize the following
objective function
OBJ ( k )  2 log Li ( k )
i
where Li(k) is the marginal likelihood of k for ith individual
11/13/2008
NONMEM Estimation Methods
[email protected]
30
What Is Marginal Likelihood ?
nj

 ( yij  f ( k , ,t ij ))2
nj
 1  
2
Li ( k )   
 e
2  
 
P(Yi|k)
P(Yi|k,i)
j 1
2
 2

1
e
2 
P(i)
d 

 h ( , k )d
i

P(Yi,i|k)
4
This is just the area under the curve (AUC) of h(,k) versus  at a fixed k
2
0
1
h(ETA)
h ()
3
k=1
-2
-1
0
1
2
ETA

11/13/2008
NONMEM Estimation Methods
• Each fixed k leads to different AUC
• Assuming only 1 subject, k̂ is
associated with maximum AUC. k̂ is
called the maximum likelihood
estimator (MLE) of k
• Even though AUC is a function of k, it
cannot be expressed as a closed-form
equation of k (difficulty of nonlinear
mixed effect modeling)
[email protected]
31
k̂
Grid Search to Find
-0.5
0.0
0.5

1
2
h(ETA)
3
0
1
0
0
-1.0
k=1.1
3
k=0.7
2
h(ETA)
2
1
()
hh(ETA)
3
k=0.3
4
4
Imagine we can try every possible k and evaluate AUC with numerical
integration (similar to trapezoidal rule with very dense data)
4
•
1.0
-1.0
-0.5
0.0
0.5

ETA
-1.0
1.0
-0.5
0.0

0.5
1.0
ETA
0.8
1.0
ETA
(k)
AUC
AUC(ke)
yall
0.4
y
0.6
1.5
1.0
0.5
0.2
k=0.3
k=0.7
k=1.1
0
2
4
6
8
10
time (hr)
Time
11/13/2008
kˆ  0.74
0.0
NONMEM Estimation Methods
0.0
0.3
0.5
0.8
1.0
1.3
1.5
1.8
2.0
k
ke
[email protected]
32
Estimation Methods
• NONMEM
– Laplacian
– First order conditional estimate (FOCE)
– First order (FO)
• SAS
– Adaptive Gaussian Quadrature
– Importance sampling
– FO
• Splus
– Lindstrom and Bates Algorithm
11/13/2008
NONMEM Estimation Methods
[email protected]
33
What is LAPLACIAN doing?
• Approximate h() with another function LAP() so that AUC
is a close-form function of k

 h ( , k )d   LAP ( , k )d  AUC
i
i

4
4
4
d 2 log hi ( )
g i " (ˆ ) 
d 2
 ˆ
k=1.1
0
0
1
1
2
h(ETA)
h(ETA)
3
3
k=0.7
3
2
1
0
or h ()
LAP ()
h(ETA)
k=0.3
-0.5
0.0

0.5
1.0
-1.0
-0.5
0.0

0.5
1.0
-1.0
-0.5
NONMEM Estimation Methods
0.0

0.5
1.0
ETA
ETA
ETA
11/13/2008
(k )

2
AUCi _ LAP ( k ) 
 hi (ˆ )
 gi " (ˆ )
-1.0
i _ LAP
2
Li ( k ) 

[email protected]
34
What is FOCE doing?
• After Laplacian approximation, the second derivative, g i " (ˆ ) ,
is further approximated by H gi ' (ˆ ), a function of the first
derivative
d log hi ( )
gi ' (ˆ ) 
Li ( k ) 

 h ( , k )d   LAP ( , k )d  AUC
i
i


i _ LAP
4
4
4
k=0.7
k=1.1
h(ETA)
1
2
0
0
0
1
1
2
h(ETA)
3
3
3
k=0.3
-1.0
-0.5
0.0

0.5
1.0
-1.0
-0.5
0.0

0.5
1.0
-1.0
-0.5
NONMEM Estimation Methods
0.0

0.5
1.0
ETA
ETA
ETA
11/13/2008
( k )  AUCi _ FOCE ( k )
2
 hi (ˆ )
H gi ' (ˆ )
AUCi _ FOCE ( k ) 
() or h ()
FOCEh(ETA)
 ˆ
2

d
[email protected]
35
What is FO doing?
• Approximate h() with another function FO() and also
approximate the second derivative, gi " (0) , with a function of
the first derivative H g ' (0)


i

 h ( , k )d   FO ( , k )d  AUC
i
i


-1.0
-0.5
0.0
0.5
1.0
h(ETA)
3
k=1.1
1
-1.0
-0.5
ETA
0.0
0.5
1.0
-1.0
ETA

11/13/2008
 gi '( 0 ) 2
2 H gi '( 0 )
0
1
2
h(ETA)
3
k=0.7
0
h(ETA)
2
1
0
FO () or h ()
3
k=0.3
(k )
4
4
4
AUCi _ FO ( k ) 
2
 hi (0)  e
H gi ' (0)
i _ FO
2
Li ( k ) 

0.0
0.5
1.0
ETA

NONMEM Estimation Methods
-0.5

[email protected]
36
Which one is the best?
aucgq
True
auclap
LAP
aucfoce
FOCE
aucfo
FO
Marginal Likelihood
1.7
1.2
kˆFO  0.83
k̂True  kˆ LAP  0.74
kˆFOCE  0.72
0.7
LAP is the best even though occasionally FOCE, even FO, is
closer to the true marginal likelihood
0.2
0.2
11/13/2008
0.4
0.6
NONMEM Estimation Methods
0.8
k
1.0
1.2
[email protected]
1.4
37
Proportional Residual Error Model
Dose ( k i )t ij
yij 
e
(1   ij )  f (k ,i , t ij )(1   ij )
V
 i ~ N (0,  2 )
 ij ~ N (0,  2 )
yij: the jth observation for the ith individual
Assume: only k is the unknown parameter to be estimated
11/13/2008
NONMEM Estimation Methods
[email protected]
38
8
8
FOCE
FO
8
LAP
8
FOCEI**
8
LAPI*
0.5
1.0
0.5
1.0
6
2
0
8
1.0
6
4
h(ETA)
2
0.0
0.5
1.0
-1.0
-0.5
0.0
0.5
1.0
0.5
1.0
ETA
6
ETA
h(ETA)
6
2
h(ETA)
0.0

0.5
0
-0.5
2
-0.5
0.0
ETA
8
-1.0
0
-1.0
-0.5
4
1.0
4
h(ETA)
6
0.5
6
h(ETA)
0.0

ETA
4
2
6
h(ETA)
0.0
ETA
2
-0.5
-1.0
1.0
2
-0.5
0
-1.0
0.5
0
-1.0
6
1.0
0.0
ETA
0
1.0
-0.5
8
0.5
2
0.5
-1.0
1.0
2
0.0
ETA
0
0.0

ETA
0.5
0
-0.5
4
h(ETA)
6
4
2
-0.5
0.0
ETA
8
-1.0
k=1.1
0
-1.0
-0.5
6
h(ETA)
6
2
0
1.0
8
0.5
0
-1.0
8
1.0
4
0.5
4
0.0
ETA
4
h(ETA)
6
4
2
0.0
ETA
h(ETA)
6
2
0
-0.5
k=0.7
0
-0.5
8
-1.0
4
h(ETA)
4
-1.0
1.0
8
0.5
4
0.0
ETA
8
-0.5
8
-1.0
4
0
0
2
2
4
h(ETA)
6
6
k=0.3
-1.0
ETA
-0.5
0.0

0.5
ETA
1.0
-1.0
-0.5
0.0

ETA
*: LAPI, Laplacian with interaction is available in NONMEM VI
**: FOCEI, first-order conditional estimate with interaction
11/13/2008
NONMEM Estimation Methods
[email protected]
39
Which one is the best?
2.2
aucgq
True
auclapi
LAPI
aucfocei
FOCEI
auclap
LAP
FOCE
aucfoce
FO
aucfo
Marginal Likelihood
1.8
1.4
ˆ  0.83
k
ˆ
FO
k̂True  k LAPI  0.69
kˆFOCEI  0.7 k̂ LAP  kˆFOCE  0.72
LAPI is the best and LAP is worse than FOCEI for
proportional error model
1.0
0.6
0.2
0.4
0.6
0.8
ke
11/13/2008
NONMEM Estimation Methods
k
1.0
[email protected]
1.2
40
A Two-Dimensional Example
Dose ( k 1 i )t ij
yij 
e
  ij  f ( k ,V ,1i ,2 i , t ij )   ij
V  2i
2


0
i ~ N (0,  )
1

2
2
 ij ~ N (0,  )
 0 2 
yij: the jth observation for the ith individual
Assume: k and V are the unknown parameters to be estimated
Goal: search for the estimates, k̂ and V̂ , that can minimize the
following objective function
OBJ ( k ,V )  2 log Li ( k ,V )
i
where Li(k, V) is the marginal likelihood of k and V for ith individual
11/13/2008
NONMEM Estimation Methods
[email protected]
41
What Is Marginal Likelihood ?
nj

nj
 1 
Li ( k )   
 e
2





 ( yij  f ( k ,V , ,t ij ))2

j 1
2
1
e
2 1

12
12
1
2  2

e
 22
 22
d1d 2 

 h ( ,
i
1
2
, k ,V )d1d 2

This is just the volume under the surface (VUS) of h(1, 2, , k, V) versus 1 and 2 at a fixed (k,V)
h (1, 2)
k=1 and V=1
11/13/2008
NONMEM Estimation Methods
• Each fixed pair (k,V) leads to different
VUS
• If k̂ and V̂ are associated with
maximum VUS. They are the
maximum likelihood estimators
(MLEs) of k and V
• Even though VUS is a function of k
and V, it cannot be expressed as a
closed-form equation of k and V
[email protected]
42
LAPLACIAN, FOCE, FO Volumes vs True Volume
FOCE
FO
h (1, 2)
h (1, 2)
LAPLACIAN
2
11/13/2008
NONMEM Estimation Methods
2
[email protected]
2
43
Summary for Estimation Methods
• The approximation of true marginal likelihood is analogous to
approximating an irregular shape with a symmetric shape whose
AUC or VUS can be easily calculated
• The difference among LAPLACIAN, FOCE and FO is mainly the
thinness and height of the symmetric shapes
• In general, the shape generated by LAPLACIAN method is the
closest to the true shape, but the shape from FOCE is almost
equally close
• For models with - interaction, taking the interaction into
account seems more important than avoiding first-order
approximation (FOCEI vs LAP)
Reference: Derivation of Various NONMEM Estimation Methods, Yaning Wang,
Journal of Pharmacokinetics and Pharmacodynamics, 34: 575-93, 2007
11/13/2008
NONMEM Estimation Methods
[email protected]
44
Full Bayesian for PopPK
Dose
Yij 
 exp( ki  t ij )   ij
Vi
p( yij |  i ,  ) ~ N ( f (t ij , i ),  )
 ki 
 i   
 Vi 
  k2i
p( i |  ,  ) ~ MVN p (  ,  )   
 k V
 ii
k V
V2
2
p( 2 ) ~ IG (a, b)
11/13/2008
2
p(  ) ~ MVN p ( , H )
NONMEM Estimation Methods
k 


i i 
   

V 

i 
p( ) ~ IW ( R,  )
[email protected]
45
Acyclic Structure

H

R
MVN
a
W

b
G

 1
MVN

Dose
Model
 2
Time
2
N
Data
11/13/2008
NONMEM Estimation Methods
[email protected]
46