Transcript Slide 1
High-resolution X-Ray diagnostic upgrade for ITER-like wall experiments at JET Amy Shumack ADAS workshop 29/9/14 A. Shumack 1/(18) ADAS workshop 28 Sept 2014 Overview • • • • The X-Ray spectrometer and upgrade Identification of W and Mo lines Other lines that we can measure Determination of plasma parameters A. Shumack 2/(18) ADAS workshop 28 Sept 2014 Introduction ITER JET JET ITER-like wall A. Shumack 3/(18) ADAS workshop 28 Sept 2014 X-Ray spectroscopy High resolution X-Ray spectroscopy • core: • impurity concentration #61098 • ion temperature • rotation velocity n T A. Shumack 4/(18) ADAS workshop 28 Sept 2014 KX1 – X-Ray crystal spectrometer Line of sight – 20 cm below average magnetic axis A. Shumack 5/(18) ADAS workshop 28 Sept 2014 Johann configuration Not to scale A. Shumack 6/(18) ADAS workshop 28 Sept 2014 Vignetting – ITER-like wall Not to scale A. Shumack 7/(18) ADAS workshop 28 Sept 2014 Vignetting – ITER-like wall Not to scale All orders of reflection collected simultaneously A. Shumack 8/(18) ADAS workshop 28 Sept 2014 Spectrometer upgrade SiO2 (1011) Intensity (arb. units) 1. New crystals 4.7 Te ~ 3.1 W46+ 3.0 3.0 3.8 3.8 4.4 Mo32+ 4.6 4.5 4.5 3.9 2.8 0 5.0000 5.1000 5.2000 Wavelength (Å) 5.3000 Bragg angle 2. GEM (Gas Electron Multiplier) detectors and DAQ system A. Shumack 9/(18) Intensity (arb units) Ge(220) Te ~ 3 keV for all shots Ni26+ 0 1.5100 ADAS workshop 1.5300 1.5500 1.5700 Wavelength (Å) 1.5900 28 Sept 2014 GEM detectors *Institute of Plasma Physics and Laser Micro-fusion, Poland • GXS project (“Gas Electron Multiplier Detector for X-ray Crystal Spectrometry” ) GEM detectors developed by IPPLM* to replace old MWPC detector Triple-GEM detector GEM foil 70 μm 140 μm (256 • Signal processing: GEM Detectors (256 strips) A. Shumack 10/(18) Signal amplification ADCs 77.7 MHz FPGA Analysis Counts (events counts) ADAS workshop 28 Sept 2014 Line identification W46+ Mo32+ M-shell transition 4d-3p L-shell transitions 3s-2p Intensity (arb. units) 4.7 ? 4.4 M2* W44+ M-shell transition ??? 3.1 3.0 3.0 3.8 3.8 4.6 4.5 3.9 4.5 2.8 0 5.0000 5.1000 5.2000 Wavelength (Å) 5.3000 Shot nrs: 83735-83753 A. Shumack 11/(18) ADAS workshop 28 Sept 2014 Line identification KX1 – Molybdenum laser blow-off experiment (Only) suspected Mo lines became significantly more intense JPN85232 Mo LBO at 58 s FAC code calculation* at 5 keV with equal Mo32+,W45+ and W46+ density *T. Nakano et al., Proceedings of the 41st EPS conference on plasma physics, 2014 A. Shumack 12/(18) ADAS workshop 28 Sept 2014 Other lines W46+ (3G) Mo32+ (M2) Mo32+ W45+ W 1st order 5.3A W 2nd order 86603 50.1-50.3s 6keV, 6E19 2.65A Increases for Ti LBO 86535 48.1-48.3s 5keV, 8E19 Ni 1st order 3.2A 86592 47.6-48.1s 7keV, 6E19 Ar16+? A. Shumack 13/(18) ADAS workshop 28 Sept 2014 Obtaining plasma parameters - Ni Voigt function Ni26+ spectral lines w: 1s2p 1P1 -> 1s2 1S0 x: 1s2p 3P2 -> 1s2 1S0 y: 1s2p 3P1 -> 1s2 1S0 Gaussian functions w Dielectronic satellite line n=2 t: 1s2s2p 2P1/2 -> 1s22s 2S1/2 x Feature consisting of dielectronic satellites, fit with fn depending on Te A. Shumack 14/(18) y Feature dielectronic satellite lines n>=3. 130 ms integration time t - Divide by vignetting function - Least squares fit Ti, ωNi26+, Ni. conc. ADAS workshop 28 Sept 2014 Plasma parameters - Ni KX1=X-Ray spectrometer r/a=0.2-0.4 r/a=0.45-0.55 Ti KX1 Te HRTS A. Shumack 15/(18) ADAS workshop 28 Sept 2014 Obtaining plasma parameters – W/Mo analyzer W and Mo analyzer GUI* εline = nW46+ . ne . PEC line I line = nW∫ FAW46+ .ne. PEC line dl assuming const. nW W46+ Mo32+ FA: calculated from ADAS ionization /recombination coefficients assuming coronal equilibrium PECs: calculated with FAC code *T. Nakano et al., Proceedings of the 41st EPS conference on plasma physics, 2014 A. Shumack 16/(18) ADAS workshop 28 Sept 2014 W and Mo concentrations Preliminary data W conc. Mo conc. A. Shumack 17/(18) ADAS workshop 28 Sept 2014 Conclusion • JET high resolution X-Ray crystal spectrometer upgraded • W and Mo lines identified • Many other non-identified lines… • T, ω, n determined for Ni ions • Preliminary W and Mo concentrations A. Shumack 18/(18) ADAS workshop 28 Sept 2014 A. Shumack 19/(18) ADAS workshop 28 Sept 2014 Extra slides A. Shumack 20/(18) ADAS workshop 28 Sept 2014 Separation of orders of reflection Ni+26 Argon escape peak 1st Pulse height spectra A. Shumack 21/(18) 2nd Diffraction spectra ADAS workshop 28 Sept 2014 W. Position, θBragg= 51.1º, arm shift = 101.6cm 86811, 5keV, 1MW ICRH, 20MW NBI (2.5 sec) W detector Δλ=4.3 pm Ni detector 1st order Δλ=1.3 pm 1st order ? 5.3A Mo32+ W46+ 3.1A ? ? 2nd order 2nd order 2.65A 1.6A Increases for Ti LBO A. Shumack 22/(18) ADAS workshop 28 Sept 2014 Ni. Position, θBragg= 52.6º, arm shift = 6.1cm 86529, 4keV, 1MW ICRH, 17MW NBI (6 sec) W detector 1st order Δλ=1.3 pm 5.4A Δλ=4.3 pm Ni detector 1st order 3.2A ?? ?? Ar16+? ?? 2nd 2nd order order 1.6A 2.7A A. Shumack 23/(18) ADAS workshop 28 Sept 2014 SUPPLIED BY HUGH SUMMERS ON 20.05.88 corrected on 18.01.89 ----------------------------------------------------------------WITH AN ELECTRON DENSITY OF 0.500E+14 CM**(-3) FOR CHARGE STATES Z=1 TO Z=25 IONISATION RATES IN FILE 'IONISE' TOTAL RECOMBINATION RATE IN FILE 'RECOMB' FOR CHARGE STATES Z=23 TO Z=25 RADIATIVE RECOMBINATION RATES IN FILE 'RADIAT' DIELECTRONIC RECOMBINATION RATES IN FILE 'DIELEC' FRACTIONAL ABUNDANCES IN FILE 'ABUNDAN' CALCULATED WITH ABEL-VAN-MAANENS SUBROUTINES ON THE CRAY2 ON 12.02.88 WITH 'JETXAY.CRAY(CORONA)' ----------------------------------------------------------------excitation rates and constants for dielectronic recombination in form of tables from Phys.Rev.A37,506 (F.Bombarda et al) all stored in NI26...., NI25.... etc, which means the rates describe transitions with NI26 etc. as starting ion A. Shumack 24/(18) ADAS workshop 28 Sept 2014 Resolution: ~ 10-4,10-3Å !! Spectral width of detector: 0.01,0.04 Å Total spectral range: ~0.1,0.4 Å A. Shumack 25/(18) ADAS workshop 28 Sept 2014 Identified lines: W46+ : 3p6 3d10 1S0 - 3p5 3d10 4d (3/2, 5/2) 1:λ= 0.52004 nm* Mo32+ : 2p 1S0 - 3s 3P1 : λ =0.52069 nm* (3G) Mo32+ : 2p 1S0 - 3s 3P2 : λ =0.5212 nm (M2) W45+ : 3p6 3d10 4s 2S1/2 - 3p5 3d10 4s 4d (3/2, 2) 1/2: λ = 0.52289 nm* W45+ : 3p6 3d10 4s 2S1/2 - 3p5 3d10 4s 4d (3/2, 3) 3/2: λ = 0.52379 nm* * Wavelength from NIST[6] A. Shumack 26/(18) ADAS workshop 28 Sept 2014 *K.B. Fournier, Phys Rev E, 53, 1084, 1996 TFU E. Kallne, J. Kallne and R.D. Cowan, Phys. Rev. A 27 (1983) 2682 C-MOD A. Shumack 27/(18) ADAS workshop 28 Sept 2014 W. Position, θBragg= ?51.2º, arm shift = ?98.0 c 86870 W detector 1st order 5.3A 2nd order 2.65A 46.9-47s A. Shumack 28/(18) Titanium LBO ADAS workshop 28 Sept 2014 W45+ (M2) Mo32+ Mo32+ W46+ Cmo/CW increased: 0.05 in 2013 => 0.2-0.3 in 2014 Const. Dl assumed Hybrid pulse: W46+, W45+ and Mo32+ seen as in 2013 Typically cW~ 3e-5, cMo~5e-6 =>cMo/cW~0.2-0.3 It seems Mo events distribute Mo sources. Baseline pulses: W45+ and Mo32+ (M2) disappeared Instead, unidentified lines appeared (shown by arrows) Suggests Another metal impurities??? Typically cW~ 2e-6, cMo~6e-7=>cMo/cW~0.2-0.3 A. Shumack 29/(18) ADAS workshop 28 Sept 2014 W. Position, θBragg= ?51.2º, arm shift = ?98.0 c 87229, ?keV, ?MW ICRH W detector Ni detector 1st order 1st order 5.3A 2nd order 3.1A 2nd order 2.65A A. Shumack 30/(18) 1.6A ADAS workshop 28 Sept 2014 Vignetting Not to scale A. Shumack 31/(18) Line averaged data ADAS workshop 28 Sept 2014