Transcript Slide 1

High-resolution X-Ray diagnostic
upgrade for ITER-like wall
experiments at JET
Amy Shumack
ADAS workshop 29/9/14
A. Shumack 1/(18)
ADAS workshop
28 Sept 2014
Overview
•
•
•
•
The X-Ray spectrometer and upgrade
Identification of W and Mo lines
Other lines that we can measure
Determination of plasma parameters
A. Shumack 2/(18)
ADAS workshop
28 Sept 2014
Introduction
ITER
JET
JET ITER-like wall
A. Shumack 3/(18)
ADAS workshop
28 Sept 2014
X-Ray spectroscopy
High resolution X-Ray spectroscopy
• core:
• impurity concentration
#61098
• ion temperature
• rotation velocity

n
T
A. Shumack 4/(18)
ADAS workshop
28 Sept 2014
KX1 – X-Ray crystal spectrometer
Line of sight – 20 cm below average magnetic axis
A. Shumack 5/(18)
ADAS workshop
28 Sept 2014
Johann configuration
Not to scale
A. Shumack 6/(18)
ADAS workshop
28 Sept 2014
Vignetting – ITER-like wall
Not to scale
A. Shumack 7/(18)
ADAS workshop
28 Sept 2014
Vignetting – ITER-like wall
Not to scale

All orders
of reflection
collected
simultaneously
A. Shumack 8/(18)
ADAS workshop
28 Sept 2014
Spectrometer upgrade
SiO2 (1011)
Intensity (arb. units)
1. New crystals
4.7
Te ~
3.1
W46+
3.0
3.0
3.8
3.8
4.4
Mo32+
4.6
4.5
4.5
3.9
2.8
0
5.0000
5.1000
5.2000
Wavelength (Å)
5.3000
Bragg angle
2. GEM (Gas Electron
Multiplier) detectors
and DAQ system
A. Shumack 9/(18)
Intensity (arb units)
Ge(220)
Te
~ 3 keV for all shots
Ni26+
0
1.5100
ADAS workshop
1.5300
1.5500
1.5700
Wavelength (Å)
1.5900
28 Sept 2014
GEM detectors
*Institute of Plasma Physics and Laser Micro-fusion, Poland
• GXS project (“Gas Electron Multiplier Detector for X-ray Crystal Spectrometry” )
 GEM detectors developed by IPPLM* to replace old MWPC detector
Triple-GEM detector
GEM foil
70 μm
140 μm
(256
• Signal processing:
GEM
Detectors
(256 strips)
A. Shumack 10/(18)
Signal
amplification
ADCs
77.7 MHz
FPGA
Analysis
Counts
(events  counts)
ADAS workshop
28 Sept 2014
Line identification
W46+
Mo32+
M-shell transition
4d-3p
L-shell transitions
3s-2p
Intensity (arb. units)
4.7
?
4.4
M2*
W44+
M-shell transition
???
3.1
3.0
3.0
3.8
3.8
4.6
4.5
3.9
4.5
2.8
0
5.0000
5.1000
5.2000
Wavelength (Å)
5.3000
Shot nrs: 83735-83753
A. Shumack 11/(18)
ADAS workshop
28 Sept 2014
Line identification
KX1 – Molybdenum laser blow-off experiment
(Only) suspected Mo lines became significantly more intense
JPN85232
Mo LBO at 58 s
FAC code calculation*
at 5 keV with equal Mo32+,W45+
and W46+ density
*T. Nakano et al., Proceedings of the 41st
EPS conference on plasma physics, 2014
A. Shumack 12/(18)
ADAS workshop
28 Sept 2014
Other lines
W46+
(3G)
Mo32+
(M2)
Mo32+
W45+
W 1st order
5.3A
W 2nd order
86603
50.1-50.3s
6keV, 6E19
2.65A
Increases for
Ti LBO
86535
48.1-48.3s
5keV, 8E19
Ni 1st order
3.2A
86592
47.6-48.1s
7keV, 6E19
Ar16+?
A. Shumack 13/(18)
ADAS workshop
28 Sept 2014
Obtaining plasma parameters - Ni
Voigt function
Ni26+ spectral lines
w: 1s2p 1P1 -> 1s2 1S0
x: 1s2p 3P2 -> 1s2 1S0
y: 1s2p 3P1 -> 1s2 1S0
Gaussian functions
w
Dielectronic satellite line n=2
t: 1s2s2p 2P1/2 -> 1s22s 2S1/2
x
Feature consisting of
dielectronic satellites,
fit with fn depending on Te
A. Shumack 14/(18)
y
Feature dielectronic satellite lines
n>=3.
130 ms
integration
time
t
- Divide by vignetting
function
- Least squares fit
 Ti, ωNi26+, Ni. conc.
ADAS workshop
28 Sept 2014
Plasma parameters - Ni
KX1=X-Ray spectrometer
r/a=0.2-0.4
r/a=0.45-0.55
Ti KX1
Te HRTS
A. Shumack 15/(18)
ADAS workshop
28 Sept 2014
Obtaining plasma parameters –
W/Mo analyzer
W and Mo analyzer GUI*
εline = nW46+ . ne . PEC line
I line = nW∫ FAW46+ .ne. PEC line dl
assuming const. nW
W46+
Mo32+
FA: calculated
from ADAS ionization
/recombination coefficients
assuming coronal
equilibrium
PECs: calculated with FAC code
*T. Nakano et al., Proceedings of the 41st EPS conference on plasma physics, 2014
A. Shumack 16/(18)
ADAS workshop
28 Sept 2014
W and Mo concentrations
Preliminary data
W conc.
Mo conc.
A. Shumack 17/(18)
ADAS workshop
28 Sept 2014
Conclusion
• JET high resolution X-Ray crystal
spectrometer upgraded
• W and Mo lines identified
• Many other non-identified lines…
• T, ω, n determined for Ni ions
• Preliminary W and Mo concentrations
A. Shumack 18/(18)
ADAS workshop
28 Sept 2014
A. Shumack 19/(18)
ADAS workshop
28 Sept 2014
Extra slides
A. Shumack 20/(18)
ADAS workshop
28 Sept 2014
Separation of orders of reflection
Ni+26
Argon
escape
peak
1st
Pulse height spectra
A. Shumack 21/(18)
2nd
Diffraction spectra
ADAS workshop
28 Sept 2014
W. Position, θBragg= 51.1º, arm shift = 101.6cm
86811, 5keV, 1MW ICRH, 20MW NBI (2.5 sec)
W detector
Δλ=4.3 pm
Ni detector
1st order
Δλ=1.3 pm
1st order
?
5.3A
Mo32+
W46+
3.1A
?
?
2nd order
2nd order
2.65A
1.6A
Increases for
Ti LBO
A. Shumack 22/(18)
ADAS workshop
28 Sept 2014
Ni. Position, θBragg= 52.6º, arm shift = 6.1cm
86529, 4keV, 1MW ICRH, 17MW NBI (6 sec)
W detector
1st order
Δλ=1.3 pm
5.4A
Δλ=4.3 pm
Ni detector
1st order
3.2A
??
??
Ar16+?
??
2nd
2nd order
order
1.6A
2.7A
A. Shumack 23/(18)
ADAS workshop
28 Sept 2014
SUPPLIED BY HUGH SUMMERS ON 20.05.88
corrected on 18.01.89
----------------------------------------------------------------WITH AN ELECTRON DENSITY OF 0.500E+14 CM**(-3)
FOR CHARGE STATES Z=1 TO Z=25
IONISATION RATES IN FILE 'IONISE'
TOTAL RECOMBINATION RATE IN FILE 'RECOMB'
FOR CHARGE STATES Z=23 TO Z=25
RADIATIVE RECOMBINATION RATES IN FILE 'RADIAT'
DIELECTRONIC RECOMBINATION RATES IN FILE
'DIELEC'
FRACTIONAL ABUNDANCES IN FILE 'ABUNDAN'
CALCULATED WITH ABEL-VAN-MAANENS
SUBROUTINES ON THE CRAY2
ON 12.02.88 WITH 'JETXAY.CRAY(CORONA)'
----------------------------------------------------------------excitation rates and constants for dielectronic recombination
in form of tables from Phys.Rev.A37,506 (F.Bombarda et al)
all stored in NI26...., NI25.... etc, which means
the rates describe transitions with NI26 etc. as starting ion
A. Shumack 24/(18)
ADAS workshop
28 Sept 2014
Resolution: ~ 10-4,10-3Å !!
Spectral width of detector: 0.01,0.04 Å
Total spectral range: ~0.1,0.4 Å
A. Shumack 25/(18)
ADAS workshop
28 Sept 2014
Identified lines:
W46+ : 3p6 3d10 1S0 - 3p5 3d10 4d (3/2, 5/2) 1:λ= 0.52004 nm*
Mo32+ : 2p 1S0 - 3s 3P1 : λ =0.52069 nm* (3G)
Mo32+ : 2p 1S0 - 3s 3P2 : λ =0.5212 nm (M2)
W45+ : 3p6 3d10 4s 2S1/2 - 3p5 3d10 4s 4d (3/2, 2) 1/2: λ = 0.52289 nm*
W45+ : 3p6 3d10 4s 2S1/2 - 3p5 3d10 4s 4d (3/2, 3) 3/2: λ = 0.52379 nm*
* Wavelength from NIST[6]
A. Shumack 26/(18)
ADAS workshop
28 Sept 2014
*K.B. Fournier, Phys Rev E, 53, 1084, 1996 TFU
E. Kallne, J. Kallne and R.D. Cowan, Phys.
Rev. A 27 (1983) 2682 C-MOD
A. Shumack 27/(18)
ADAS workshop
28 Sept 2014
W. Position, θBragg= ?51.2º, arm shift = ?98.0 c
86870
W detector
1st order
5.3A
2nd order
2.65A
46.9-47s
A. Shumack 28/(18)
Titanium LBO
ADAS workshop
28 Sept 2014
W45+
(M2)
Mo32+
Mo32+
W46+
Cmo/CW increased:
0.05 in 2013 => 0.2-0.3 in 2014
Const. Dl assumed
Hybrid pulse:
W46+, W45+ and Mo32+ seen as in 2013
Typically cW~ 3e-5, cMo~5e-6 =>cMo/cW~0.2-0.3
It seems Mo events distribute Mo sources.
Baseline pulses:
W45+ and Mo32+ (M2) disappeared
Instead, unidentified lines appeared
(shown by arrows)
Suggests Another metal impurities???
Typically cW~ 2e-6, cMo~6e-7=>cMo/cW~0.2-0.3
A. Shumack 29/(18)
ADAS workshop
28 Sept 2014
W. Position, θBragg= ?51.2º, arm shift = ?98.0 c
87229, ?keV, ?MW ICRH
W detector
Ni detector
1st order
1st order
5.3A
2nd order
3.1A
2nd order
2.65A
A. Shumack 30/(18)
1.6A
ADAS workshop
28 Sept 2014
Vignetting
Not to scale
A. Shumack 31/(18)
Line averaged data
ADAS workshop
28 Sept 2014