Missie en Visie TU Delft

Download Report

Transcript Missie en Visie TU Delft

Modeling Electromagnetic Fields
An Application in MRI
Kirsten Koolstra
April 22nd, 2015
Challenge the future
1
Introduction
Magnetic Resonance Imaging (MRI)
Challenge the future
2
Introduction
RF Interference in MRI
1
πœ†βˆ
𝐡0
𝐡0 = 1.5 𝑇
𝐡0 = 3.0 𝑇
Challenge the future
3
Challenge the future
4
Introduction
The Effect of Dielectric Pads
Challenge the future
5
Introduction
The Effect of Dielectric Pads
Without pad
With pad
Without pad
With pad
Challenge the future
6
Introduction
Design Procedure: Numerical Modeling
Challenge the future
7
Challenges
β€’
β€’
β€’
β€’
β€’
Strong (localised) inhomogeneities in medium parameters
Large computational domain due to the body model
Accurate for low resolution!
Fast!
Take into account the boundary conditions
Challenge the future
8
The Volume Integral Equation
(VIE)
𝑬𝑖𝑛𝑐 = 𝑬 βˆ’ π‘˜π‘2 + 𝛻𝛻 βˆ™ 𝑺 πœ’π‘’ 𝑬
𝑺(𝑱) =
𝑔 𝒙′ βˆ’ 𝒙 𝑱 𝒙 𝑑𝒙
Ξ©
Challenge the future
9
Different Formulations
EVIE:
𝑬𝑖𝑛𝑐 = 𝑬
DVIE:
𝑬𝑖𝑛𝑐 =
JVIE:
1
𝑫
πœ€π‘ 𝑐
πœ‚0 πœ’π‘’ 𝑬𝑖𝑛𝑐 = 𝑱
βˆ’
𝒩𝑺 πœ’π‘’ 𝑬
βˆ’
𝒩𝑺( 𝑒 𝑫𝑐 )
βˆ’
𝒩𝑺(𝑱)πœ’π‘’
𝑫𝑐 = πœ€π‘ 𝑬
𝑱 = πœ‚0 πœ’π‘’ 𝑬
𝒩 = π‘˜π‘2 + 𝛻𝛻 βˆ™
πœ’
πœ€π‘
Challenge the future
10
The Method of Moments
ℒ𝑒 = 𝑓
1.
2.
3.
4.
5.
6.
Derive weak form ℒ𝑒, πœ‚ = 𝑓, πœ‚ .
Define a mesh.
Expand the unknown 𝑒 through basis functions φ𝑖 .
Choose test functions πœ‚π‘– .
Calculate/approximate the integrals.
Define the discretised system
π‘Žπ‘₯π‘₯ π‘Žπ‘₯𝑦 𝒆π‘₯
𝒃π‘₯
=
.
π‘Žπ‘¦π‘₯ π‘Žπ‘¦π‘¦ 𝒆𝑦
𝒃𝑦
Challenge the future
11
Test Functions
β€’ Callocation Method:
πœ‚π‘– 𝒙 = 𝛿 𝒙 βˆ’ 𝒙𝑖
β€’ Galerkin’s Method:
πœ‚π‘– 𝒙
= πœ‘π‘– (𝒙)
Challenge the future
12
Basis Functions
Rooftop
π‘₯
𝑦
𝑦
π‘₯
Challenge the future
13
Basis Functions
Challenge the future
14
A Closer Look
EVIE Formulation
EVIE:
𝑬𝑖𝑛𝑐 = 𝑬
DVIE:
𝑬𝑖𝑛𝑐 =
JVIE:
1
𝑫
πœ€π‘ 𝑐
πœ‚0 πœ’π‘’ 𝑬𝑖𝑛𝑐 = 𝑱
βˆ’
𝒩𝑺 πœ’π‘’ 𝑬
βˆ’
𝒩𝑺( 𝑒 𝑫𝑐 )
βˆ’
𝒩𝑺(𝑱)πœ’π‘’
πœ’
πœ€π‘
Challenge the future
15
A Closer Look
Scattering on a Two-Layered Cylinder
β€’ TE-polarisation
β€’ 𝐸 𝑖𝑛𝑐 = βˆ’π‘’ βˆ’π‘–π‘˜π‘ 𝑦
π‘₯
β€’ 𝑓 = 128 𝐻𝑧
𝑦
Challenge the future
16
A Closer Look
Scattering on a Two-Layered Cylinder
Challenge the future
17
Some Observations
1. Contrast:
2. Basis functions:
3. Geometry:
Low contrast vs high contrast
Rooftop
vs 2 x linear
Cylinder
vs square
Challenge the future
18
Observation 1
Low Contrast vs High Contrast
Challenge the future
19
Observation 1
Low Contrast vs High Contrast
Challenge the future
20
Observation 2
Rooftop Expansion vs Linear Expansion
Challenge the future
21
Observation 2
Rooftop Expansion vs Linear Expansion
Challenge the future
22
Observation 3
Two-Layered Cylinder vs Two-Layered Square
Challenge the future
23
Observation 3
Two-Layered Cylinder vs Two-Layered Square
Challenge the future
24
What is the cause of these jumps?
β€’ Basis functions?
β€’ Formulation?
β€’ Geometry?
Challenge the future
25
Fast
Accurately
Approach
β€’ Compare the EVIE formulation with the DVIE and JVIE
formulations.
β€’ Analysing contrast dependency.
β€’ Find out what happens for different geometries.
β€’ Compare the performance of GMRES and IDR(s) methods.
Challenge the future
26
Function Spaces
EVIE: 𝐻 π‘π‘’π‘Ÿπ‘™, ℝ3 ⟼ 𝐻 π‘π‘’π‘Ÿπ‘™, ℝ3
DVIE: 𝐻 𝑑𝑖𝑣, ℝ3 ⟼ 𝐻 π‘π‘’π‘Ÿπ‘™, ℝ3
JVIE: 𝐿2 ℝ3 3 ⟼ 𝐿2 ℝ3 3
where
𝐻 π‘π‘’π‘Ÿπ‘™, ℝ3 = 𝑓 𝑓 ∈ 𝐿2 ℝ3 ∧ 𝛻 × π‘“ ∈ 𝐿2 ℝ3
𝐻 𝑑𝑖𝑣, ℝ3 = 𝑓 𝑓 ∈ 𝐿2 ℝ3 ∧ 𝛻 βˆ™ 𝑓 ∈ 𝐿2 ℝ3
Challenge the future
27