Missie en Visie TU Delft
Download
Report
Transcript Missie en Visie TU Delft
Modeling Electromagnetic Fields
An Application in MRI
Kirsten Koolstra
April 22nd, 2015
Challenge the future
1
Introduction
Magnetic Resonance Imaging (MRI)
Challenge the future
2
Introduction
RF Interference in MRI
1
πβ
π΅0
π΅0 = 1.5 π
π΅0 = 3.0 π
Challenge the future
3
Challenge the future
4
Introduction
The Effect of Dielectric Pads
Challenge the future
5
Introduction
The Effect of Dielectric Pads
Without pad
With pad
Without pad
With pad
Challenge the future
6
Introduction
Design Procedure: Numerical Modeling
Challenge the future
7
Challenges
β’
β’
β’
β’
β’
Strong (localised) inhomogeneities in medium parameters
Large computational domain due to the body model
Accurate for low resolution!
Fast!
Take into account the boundary conditions
Challenge the future
8
The Volume Integral Equation
(VIE)
π¬πππ = π¬ β ππ2 + π»π» β πΊ ππ π¬
πΊ(π±) =
π πβ² β π π± π ππ
Ξ©
Challenge the future
9
Different Formulations
EVIE:
π¬πππ = π¬
DVIE:
π¬πππ =
JVIE:
1
π«
ππ π
π0 ππ π¬πππ = π±
β
π©πΊ ππ π¬
β
π©πΊ( π π«π )
β
π©πΊ(π±)ππ
π«π = ππ π¬
π± = π0 ππ π¬
π© = ππ2 + π»π» β
π
ππ
Challenge the future
10
The Method of Moments
βπ’ = π
1.
2.
3.
4.
5.
6.
Derive weak form βπ’, π = π, π .
Define a mesh.
Expand the unknown π’ through basis functions Οπ .
Choose test functions ππ .
Calculate/approximate the integrals.
Define the discretised system
ππ₯π₯ ππ₯π¦ ππ₯
ππ₯
=
.
ππ¦π₯ ππ¦π¦ ππ¦
ππ¦
Challenge the future
11
Test Functions
β’ Callocation Method:
ππ π = πΏ π β ππ
β’ Galerkinβs Method:
ππ π
= ππ (π)
Challenge the future
12
Basis Functions
Rooftop
π₯
π¦
π¦
π₯
Challenge the future
13
Basis Functions
Challenge the future
14
A Closer Look
EVIE Formulation
EVIE:
π¬πππ = π¬
DVIE:
π¬πππ =
JVIE:
1
π«
ππ π
π0 ππ π¬πππ = π±
β
π©πΊ ππ π¬
β
π©πΊ( π π«π )
β
π©πΊ(π±)ππ
π
ππ
Challenge the future
15
A Closer Look
Scattering on a Two-Layered Cylinder
β’ TE-polarisation
β’ πΈ πππ = βπ βπππ π¦
π₯
β’ π = 128 π»π§
π¦
Challenge the future
16
A Closer Look
Scattering on a Two-Layered Cylinder
Challenge the future
17
Some Observations
1. Contrast:
2. Basis functions:
3. Geometry:
Low contrast vs high contrast
Rooftop
vs 2 x linear
Cylinder
vs square
Challenge the future
18
Observation 1
Low Contrast vs High Contrast
Challenge the future
19
Observation 1
Low Contrast vs High Contrast
Challenge the future
20
Observation 2
Rooftop Expansion vs Linear Expansion
Challenge the future
21
Observation 2
Rooftop Expansion vs Linear Expansion
Challenge the future
22
Observation 3
Two-Layered Cylinder vs Two-Layered Square
Challenge the future
23
Observation 3
Two-Layered Cylinder vs Two-Layered Square
Challenge the future
24
What is the cause of these jumps?
β’ Basis functions?
β’ Formulation?
β’ Geometry?
Challenge the future
25
Fast
Accurately
Approach
β’ Compare the EVIE formulation with the DVIE and JVIE
formulations.
β’ Analysing contrast dependency.
β’ Find out what happens for different geometries.
β’ Compare the performance of GMRES and IDR(s) methods.
Challenge the future
26
Function Spaces
EVIE: π» ππ’ππ, β3 βΌ π» ππ’ππ, β3
DVIE: π» πππ£, β3 βΌ π» ππ’ππ, β3
JVIE: πΏ2 β3 3 βΌ πΏ2 β3 3
where
π» ππ’ππ, β3 = π π β πΏ2 β3 β§ π» Γ π β πΏ2 β3
π» πππ£, β3 = π π β πΏ2 β3 β§ π» β π β πΏ2 β3
Challenge the future
27