Transcript Document
Chapter 4: Newton and Universal Motion Mechanics • Mechanics = laws of motion • Aristotle Qu ickT ime™ an d a T IFF (Unc omp ress ed) d ecom pre ssor are n eed ed to see this pi – Rest = Natural State of Motion – Heavy objects fall faster • Galileo – Object continues in motion unless something pushes on it – Heavy and light objects fall at same rate Qui ckTime™ and a Microsoft Video 1 decompressor are needed to see this pictur e. Study of Motion (Mechanics) • Velocity – Change in location Speed (mph) and direction (NE) • Acceleration – Change in velocity (speed and/or direction) • Force – Push or pull (pounds) • Mass – How much stuff (grams, kilograms) Mass vs Weight • Mass Produces Gravity – Mass intrinsic to object (never changes) mass on Moon = mass on Earth – Gravity proportional to mass • Weight = Force of Gravity – Stand on scale scale pushes back with equal force weight on Moon = 1/6 weight on Earth – Weight proportional to mass • Free-Fall (falling elevator, astronauts) – Acceleration of gravity = weight / mass All objects fall at same rate – Objects appear “weightless” in space, force of gravity is not zero Newton • QuickTime™ and a TIFF(Uncompressed) decompressor are needed to see t his picture. Laws of Motion 1. Moving object keeps moving • • Same speed Same direction Objects want to move in straight line 2. Change in motion (speed or direction) • caused by force acceleration = force / mass 3. Equal, but opposite, forces between pairs of objects Push on object; it pushes back (just as hard) Newton • Invents mathematics (calculus) – Used to solve force equations • Circular motion – – – – Direction of motion changes Requires force Force changes direction; speed unaltered Force points toward center of circle Newton • Gravity – Pulls apple toward earth – makes apple fall QuickTime™ and a TIFF(Uncompressed) decompressor are needed to see thi s picture. Weight = force of gravity • Orbits similar to circles • Newton’s Hypothesis – All objects produce gravity – Sun’s gravity Gravity • planets orbit sun – Planet’s gravity • moon orbits planet Sun Launching Rockets • Fire Cannon Sideways; keep increasing velocity – Rocket moves sideways; offsets falling QuickTime™ and a TIFF (Uncompressed) decompressor are needed t o see t his pict ure. • Circular Orbit Speed =17,000 mph • Escape Speed = 25,000 mph Newton • Law of Gravity Force = G M1M2 / R2 M1 = mass 1st object (sun) M2 = mass 2nd object (planet) R = distance between them G = Newton’s constant (a number) – Double either mass: force increases by 2 – Double distance: force decreases by 4 •Larger (smaller) mass causes larger (smaller) gravitational force. •Larger (smaller) distance causes smaller (larger) gravitational force. Newton and Planets • Law of Gravity Force = G MsunMplanet / R2 Acceleration = Force / Mplanet = G Msun / R2 – Planet motion: • independent of planet mass depends on: mass of sun distance Newton and Planets Laws of motion + Gravity • Predicts Kepler’s Laws: – 1st Law (orbits are ellipses) – 2nd Law (equal area in equal time) • conservation of angular momentum – Skater pulls arms in; spins faster – Planet gets closer to sun; goes faster – Extended 3rd Law a3 = M P2 M in solar masses • use to measure mass M (of central body) Consider a planet orbiting the Sun. If the mass of the planet doubled but the planet stayed at the same orbital distance, then the planet would take a) more than twice as long to orbit the Sun. b) exactly twice as long to orbit the Sun. c) the same amount of time to orbit the Sun. d) exactly half as long to orbit the Sun. e) less than half as long to orbit the Sun. Imagine a new planet in our solar system located 3 AU from the Sun. Which of the following best approximates the orbital period of this planet? a) 1 year b) 3 years c) 5 years d) 9 years P2=a3, so if a=3, then a3=3x3x3=27; then P2=27, so P~5 (since 5x5=25)