Transcript Document
A Population-based Analysis of Dalteparin Pharmacokinetics in Pediatric Patients at Risk for Thromboembolic Events J.S. Barrett, L.G. Mitchell, D. Patel, P. Cox, P. Vegh, M. Castillo, P. Massicotte Division of Clinical Pharmacology and Therapeutics, Children’s Hospital of Philadelphia; Pediatric Thrombosis Program and Critical Care Unit , Stollery Childrens Hospital; Hospital for Sick Children, Toronto, Canada Study Design An open-label, dose-finding trial in children (>36 weeks gestational age-16 years) with objectively confirmed TE, requiring therapeutic dosages of anticoagulants Dose Adjustment phase: 1-7 days until a prophylactic plasma anti-Xa level is achieved. Maintenance phase: additional 5 (+3) days (following dose adjustment phase) during which detailed pharmacokinetic assessments will be performed. Follow-up Phase: For up to 90 days with prophylactic doses of dalteparin or until the end of required anticoagulation treatment, whichever comes first (prophylactic dose is adjusted monthly to ensure prophylactic anti-Xa levels are maintained). Model Building • A PPK model was developed using anti-Xa data from all phases of the study (mostly from the dose adjustment phase) • The model was developed using NONMEM (version 6) and was based on a 2 CPM with first order absorption (ADVAN4 TRANS4) with allometrically-scaled CL and V, a proportional CV error model and endogenous anti-Xa activity. • FOCE with - interaction used for method/estimation 6 16 12 5 16 15 16 16 4 13 13 12 16 5 15 8 12 16 12 8 5 7 4 7 8 7 12 11 227 12 16 7 22 21 1 8 31 1 11 7 15 131 7 122 12 1 11 118214 2 28 13 29 7 82 2 26 25 2 23 29 7 31 14 181 14 10 28 122 14 10714 8 2515 2 31 14 28 31 24 13 19 2 10325 26 610 1 3 18 29 20 10 3 141813 10 13 134 9 7 14 10 11 24 22 23 24 17 3 19 4 57 30 19 22 19 26 19 30 6 23 27 62624 1127 2713 19 17 25 16 18 207 307 3 12 69 12 278 3 9519 617 24 10227 125 26 22 11 18 26 20 623 0.4 0.2 5 15 8 15 12 8 12 16 16 5 7 31 5 3 15 8 13 8 25 13 15 16 31 16 2 0 23 15 5 8 -2 0.1 0.2 0.3 0.4 Predicted Plasma Fragmin (IU/mL) 5 12 15 15 7 7 0.0 7 5 13 1012 8 3 19 11 2 4 18 2 2 14 31 1 8 1 8 1 9 21 7 3 29 14 8 21 12 1 4 22 28 6 11 28 22 1 1310 2 229 24 2 1926 4 1 25 12 29126 16 8 7 3 24 7 20 6 1010 311 17 12 26 11 196 20 224 19 30 14 22 24 7 10 10 10 66 14 9 6 22 16 27 14 25 1 2 25 18 27 4 7 5 3272414 28 518 10 16 19 1 3121 9 19 12 11 8 1711 18 12 19 17 7 7 23 31 2 30 10 0.2 0.4 0.6 0.8 Observed Plasma Fragmin (IU/mL) 12 14 22 27 -2 0.0 7 7 13 13 30 3 12 22 25 2618 27 23 11 6 26 20 1 1 5 2 0 0.0 0.2 0.4 0.6 0.8 Observed Plasma Fragmin (IU/mL) 8 23 7 7 12 8 13 12 7 15 13 7 2 Weighted Residuals 16 8 8 0.6 Weighted Residuals 12 16 4 7 12 23 3 7 1378 127 7 87 1312 7 7 13 513 8 13 168 12 14 13 10 8 30 11 218 4 31 21 11588 27 37 92522 21 12 13 29 122 21 12 425 8 3 28 14 6 26 11 28 1 13 27 10 24 22 18 2 29 16 26 423 25 26 122 29 26 111 24 20 71 86 7 20 10 3 17 10 31 261 12 11 14 20 19 226 19 5 30 24 24 16 1022 10 622 10 14 27 25 1696 27 25 18 27 14 710 4 5 24 28 5 27 183 11 16 8 112 119 1919 17 12 18 12 10 17 7 2 23 31 30 19 3 22 1 7 19 14 3 19 23 5 15 8 16 500 1000 1500 Time (minutes) 16 8 8 0 3 15 15 8 2 31 5 7 23 13 7 7 12 7 7 13 7 13 5 8 19 14 13 10 3822 2 411 18 2 31 8 14 12 15 1 8 1 921 7 1 29 313 7 21 22 28428 12 14 62 11 28 22 1 13 10 24 2 26 16 12 4 2524 2919 29 26 1 1 8 20 76 10 3 17 17 10 31 12 26 11 14 20 19 30 24 22 19 16 10 10 2 6 6 10 22 6 14 6 2725 9 1 2 25 18 27 4 14 7 24 28 3 5 10 27 18 11 16 83 1 11 9 19 19 17 12 12 18 12 17 19 10 7 23 31 27 30 13 16 12 23 5 158 -2 0 127 13 30 27 25 3 26 24 7 5 2 221225 26 27 18 23 11620 11 5 7 7 16 8 16 16 12 0.6 7 12 0.4 0.2 8 0.0 10 15 20 Time After Dose (minutes) 5 0.8 16 5 2000 15 12 16 12 1 7 F 15 4 1 61 E 6 2 14 2 0 0.5 Observed and Predicted Plasma Fragmin (IU/mL) 0.2 7 Individual Predicted Plasma Fragmin (IU/mL) 0.4 10 1 12 111 1 1 10 11 1010 14 11 1 10 22 18 25 18 822 25 11 18 5 1 5 17 22 12 28 10 28 24510 12 13 21 30 19 14 17 3 26 14 14 14 19 19 19 2414 4 30 20 2 26 1 31 2531 2 27 19 24 3 6 3 12 8 29 1 1 9 2 8 29 2 8 12 28 17 23 11 63 12 22 110 21 831 66 2 2 14 13 12 8 19 7 7 27 29 4 18 24 26 7 7 3 7 8 16 16 7 22 715 7 4 7 6 228 14 15 7 9 23 2 7 8 6 15 13 20 9 19 13 25 7 13 13 23 5 13 15 7 31 30 24 27 11 26 12 12 125 218 1016 7 7 13 22 5 8 26 20 627 23 3 3 Implications for Monitoring Practices and Dose Adjustment in Children 16 15 0.8 Figure 2: Diagnostic plots confirm the suitability of the model to describe sources of variation in dalteparin PK across pediatric subpopulations: (A) PRED vs DV, (B) IPRED vs DV, (C) WRES vs PRED, (D) WRES vs TIME, (E) WRES vs TAD and (F) DV, PRED vs TAD. Some under-predicted high concentrations were observed (primarily after the initial dose adjustment phase) and unassociated with measured covariates. RESULTS DESIGN / METHODS 0.6 0.0 * Other (Native Canadian, Aboriginal, East Indian, Asian, missing) 2. To examine the PK of prophylactic doses of dalteparin and document the long-term safety up to 90 days administration 0.8 0.0 0.1 16.3 22.6 2.6 100.0 Categorical Covariates, N (% total) Race Sex Caucasian, 17 (%) Male = 21 (%) Black = 2 (%) Female = 10 (%) Asian = 4 (%) Other* = 8 (%) Sampling Density Across Age Strata D 15 7.4 Overall 6 16 Continuous Covariates Age (mos or yr) Weight (kg) Mean Min Max Mean Min Max 0.7 0.1 1.9 3.2 2.6 3.9 7.1 2.9 10.9 6.6 4.7 9.3 2.9 1.1 4.4 12.1 6.4 14.6 7.3 5.5 9.6 22.5 13.7 34.3 14.2 11.5 16.3 58.1 41.4 100.0 Age Category 1: 0-2 mos (n=5) 2: 2-12 mos (n=9) 3: 1-5 yr (n=4) 4: 6-10 yr (n=5) 5: 11-18 yr (n=8) OBJECTIVES 1. To determine the dose of dalteparin required to achieve satisfactory prophylactic anti-factor Xa level in children at increased risk of TEs. A Table 1: Study demographics (N=31 evaluable patients) Population Predicted Plasma Fragmin (IU/mL) • Low-molecular-weight heparins (LMWHs) are increasingly being used for prophylaxis and treatment of thromboembolic events (TE) in children. • The LMWH dalteparin offers the advantage of once-daily dosing. • Prior to this trial, dalteparin has not been studied in pediatric patients and appropriate dosing or pharmacokinetics is not known. • Anti-Xa activity is used as a surrogate for active dalteparin moieties (< 2000 D fraction) in plasma. • A target peak exposure of 0.10-0.40 Anti-Xa IU/mL (C4h, based on adult experience) has been used as the de facto dosing guidance for dalteparin though this has not been challenged clinically nor have dosing adjustment strategies been defined. RESULTS (continued) RESULTS (continued) B C DESIGN / METHODS (continued) Weighted Residuals BACKGROUND 8 5 15 13 8 13 71 2 11 1 7 7 12 214 22 12 31 1 16 11 1 18 8 128 14 18 16 28 16 4 2 21 3 12 7 15 8 11 2 29 913 726 25 19 413 7222 28 23 291 10 14 10 22 5 610 1 2 26 1 29 1 3 14 724 2 13 10 20 10 14 25 12 14 22 15 31 3128 10 8 7 313 5 19 17 18 25 330 1 24 14 18 10 7 7 11 26 24 24 36 619 2 6 4 27 19 27 19 27 17 30 23 69 17 19 22 2 5 7 13 7 12 30 25 7 11 20 27 618 23 19 9 3 26 24 2 10 0 25 31 15 10 1 8 13 12 14 78 5 3 12 225 25 27 18 116 26 23 11 16 20 10 15 20 Time After Dose (minutes) 25 Table 3: Model-Derived Secondary Parameters Figure 1: The more rigorous, sparse sampling design yielded adequate data density to define a structural model characterizing the entire dalteparin disposition profile. Sampling frequency for each age strata shown – Categories: (1) 0-2 months, (2) 2-12 months, (3) 1-5 yrs, (4) 6-10 yrs and (5) 11-18 yrs. The final dataset included 31 patients and 193 Anti-Xa observations. Table 2: Parameter estimates of the final model Estimate SE %RSE %CV Final Model Parameter CL (mL/h) θCL 1410 165 11.7 - V (mL) θV 9470 1310 13.8 - Q (mL/h) θQ 202 10.7 5.3 - V2 (mL) θV2 42.3 24.8 58.6 - KA (IU/mL) θKA 0.511 0.127 24.9 - ENDO (IU/mL) θENDO 0.0342 0.00226 6.6 - Inter-individual Variance 0-2 months (n=5) 2-12 months (n=6) 1-5 years (n=3) 5-10 years (n=4) 10-16 years (n=8) Cmax [IU/mL] 0.13 (0.03-0.36) 0.264 (0.04-0.92) 0.255 (0.05-0.82) 0.285 (0.025-0.76) 0.335 (0.01-0.9) Tmax [h] 1.59 (1.48-1.83) 1.80 (1.69-2.61) 2.077 (1.93-2.15) 2.28 (2.00-2.41) 2.55 (2.22-3.10) T1/2 [h] 0.50 (0.45-0.63) 0.61 (0.55-1.13) 0.77 (0.68-0.81) 0.90 (0.72-0.99) 1.08 (0.85-1.5) AUCtau (IU/h) 0.002 (0.001-0.003) 0.002 (0-0.005) 0.003 (0.002-0.005) 0.003 (0.001-0.006) 0.003 (0.001-0.013) V/F [L/h/kg] 0.038 (0.022-0.066) 0.036 (0.008-0.049) 0.036 (0.017-0.044) 0.033 (0.019-0.080) 0.032 (0.012-0.072) CL/F [L/h/kg] 0.046 (0.03-0.072) 0.032 (0.005-0.053) 0.031 (0.018-0.042) 0.024 (0.017-0.076) 0.019 (0.007-0.032) Table 4: Clinical Performance – Achieving Target Exposure 0-2 mos (n=5) 2-12 mos (n=6) 1-5 yrs (n=3) 5-10 yrs (n=4) 10-16 yrs (n=8) Maintenance dose [IU] 316 (260-390) 585 (447-876) 730 (640-1400) 1825 (1370-2500) 3445 (2500-5500) Maintenance dose [IU/kg] 100 (100) 100 (50-100) 100 (50-100) 87.5 (73-100) 62.5 (25-100) Time to achieve target range [days] 1 (1-3) 1 (1-2) 1 (1) 1 (1-3) 1.5 (1-3) % of Patients in target range (cumulative) ETA1 ω 2CL 0.436 0.106 24.3 66.0 ETA2 ω 2V 0.123 0.0967 78.6 35.1 1 day 80 83.3 100 50 50 ETA3 ω 2KA 0.458 0.207 45.2 67.7 2 days 80 100 100 75 87.5 ETA4 ω 2Q 7.93 5.96 75.2 281.6 3 days 100 100 100 100 100 EPS1 ω 2prop 0.0999 0.0166 16.6 31.6 > 3 days 100 100 100 100 100 Figure 3: The discrete sampling practice of measuring Anti-Xa activity at 4h as a surrogate for peak exposure may mask age-related changes in Tmax. The concentration at 4 hours across the various age strata (left panel) does not discriminate the age-related changes in Tmax (right panel). Younger children reach peak exposure sooner and hence the concentration at 4 hours may underestimate peak anti-Xa activity and recommend dose adjustment when not warranted. DISCUSSION AND CONCLUSIONS • The PPK model is well predicted; pediatric anti-Xa exposure of dalteparin is well characterized by a 2 CPM structural model with allometrically scaled CL and V, a proportional residual error model and an additive term for endogenous anti-Xa activity. • MAP Bayes estimates from the final model suggests that agerelated differences exist in the Tmax of SC administered dalteparin. This has been poorly studied with other LMWHs due to the reliance on TDM-based, discrete sampling around the presumed Cmax (4 hours) based on adult data. • Age-specific guidance on monitoring to assess the achievement of therapeutic Anti-Xa levels may be warranted if peak exposure is clinically relevant – this remains to be verified. • The model will form the basis of additional covariate identification in pediatric patients and used to support design of future trials particularly with emphasis on managing toxicities. • Likewise, an external validation is planned from both standard of care dosing and TDM data and the results of a prospective dosefinding trial due to enroll by year’s end.