Transcript Math 260

Ch 5.5: Series Solutions Near a Regular Singular Point, Part I

We now consider solving the general second order linear equation in the neighborhood of a regular singular point

x

0 . For convenience, will will take

x

0 = 0.

The point

x

0 = 0 is a regular singular point of 2

P

(

x

)

d dx

2

y

Q

(

x

)

dy dx

R

(

x

)

y

 0 iff

x Q

(

P

(

x

) 

x

)

xp

(

x

) and

x

2

R

(

x

)

P

(

x

) 

x

2

q

(

x

) are analytic at

x

 0 iff

xp

(

x

) 

n

   0

p n x n

and

x

2

q

(

x

) 

n

   0

q n x n

, convergent on

x

 

Transforming Differential Equation

Our differential equation has the form

P

(

x

)

y

 

Q

(

x

)

y

 

R

(

x

)

y

 0 Dividing by

P

(

x

) and multiplying by

x

2 , we obtain

x

2

y

 

x

xp

(

x

) 

y

  

x

2

q

(

x

) 

y

 0 Substituting in the power series representations of

p

and

q

,

xp

(

x

) 

n

   0

p n x n

,

x

2

q

(

x

) 

n

   0

q n x n

, we obtain

x

2

y

 

x

p

0 

p

1

x

p

2

x

2  

y q

0 

q

1

x

q

2

x

2   

y

 0

Comparison with Euler Equations

Our differential equation now has the form

x

2

y

 

x

p

0 

p

1

x

p

2

x

2  

y q

0 

q

1

x

q

2

x

2   

y

 0 Note that if

p

1 

p

2   

q

1 

q

2    0 then our differential equation reduces to the Euler Equation

x

2

y

 

p

0

x y

 

q

0

y

 0 In any case, our equation is similar to an Euler Equation but with power series coefficients. Thus our solution method: assume solutions have the form

y

(

x

) 

x r

a

0 

a

1

x

a

2

x

2    

n

   0

a n x r

n

, for

a

0  0 ,

x

 0

Example 1: Regular Singular Point

(1 of 13) Consider the differential equation 2

x

2

y

 

x y

   1 

x

y

 0 This equation can be rewritten as

x

2

y

 

x

2

y

  1  2

x y

 0 Since the coefficients are polynomials, it follows that

x

= 0 is a regular singular point, since both limits below are finite: lim

x

 0

x x

2

x

2   1 2   and

x

lim  0

x

2 1 2

x

2

x

 1 2  

2

x

2

y

 

x y

   1 

x

y

 0

Example 1: Euler Equation

(2 of 13) Now

xp

(

x

) = -1/2 and

x

2

q

(

x

) = (1 +

x

)/2, and thus for

xp

(

x

) 

n

   0

p n x n

,

x

2

q

(

x

) 

n

   0

q n x n

, it follows that

p

0   1 / 2 ,

q

0  1 / 2 ,

q

1  1 / 2 ,

p

1 

p

2   

q

2 

q

3    0 Thus the corresponding Euler Equation is

x

2

y

 

p

0

x y

 

q

0

y

 0  2

x

2

y

 

x y

 

y

 0 As in Section 5.5, we obtain

x r

 2

r

(

r

 1 ) 

r

 1   0   2

r

 1 

r

 1   0 

r

 1 ,

r

 1 / 2 We will refer to this result later.

2

x

2

y

 

x y

   1 

x

y

 0

Example 1: Differential Equation

(3 of 13) For our differential equation, we assume a solution of the form

y

(

x

) 

n

   0

a n x r

n

,

y

 (

x

) 

n

   0

a n

r y

 (

x

) 

n

   0

a n

r

n



r

n

 1 

x r

n

 2 

n

x r

n

 1 , By substitution, our differential equation becomes

n

   0 2

a n

r

n



r

n

 1 

x r

n

n

   0

a n

r

n

x r

n

n

   0

a n x r

n

n

   0

a n x r

n

 1  0 or

n

   0 2

a n

r

n



r

n

 1 

x r

n

n

   0

a n

r

n

x r

n

n

   0

a n x r

n

n

   1

a n

 1

x r

n

 0

Example 1: Combining Series

(4 of 13) Our equation

n

   0 2

a n

r

n



r

n

 1 

x r

n

n

   0

a n

r

n

x r

n

n

   0

a n x r

n

n

   1

a n

 1

x r

n

 0 can next be written as

a

0  2

r

(

r

 1 ) 

r

 1 

x r

n

   1 

a n

 2 

r

n



r

n

 1   (

r

n

)  1  

a n

 1 

x r

n

 0 It follows that

a

0  2

r

(

r

 1 ) 

r

 1   0 and

a n

 2 

r

n



r

n

 1   (

r

n

)  1  

a n

 1  0 ,

n

 1 , 2 , 

Example 1: Indicial Equation

(5 of 13) From the previous slide, we have

a

0  2

r

(

r

 1 ) 

r

 1 

x r

n

   1 

a n

 2 

r

n



r

n

 1   (

r

n

)  1  

a n

 1 

x r

n

The equation

a

0  2

r

(

r

 1 ) 

r

 1   0

a

0  0  2

r

2  3

r

 1  ( 2

r

 1 )(

r

 1 )  0  0 is called the

indicial equation

, and was obtained earlier when we examined the corresponding Euler Equation. The roots

r

1 = 1,

r

2 = ½, of the indicial equation are called the

exponents of the singularity,

for regular singular point

x

= 0. The exponents of the singularity determine the qualitative behavior of solution in neighborhood of regular singular point.

Example 1: Recursion Relation

(6 of 13) Recall that

a

0  2

r

(

r

 1 ) 

r

 1 

x r

n

   1 

a n

 2 

r

n



r

n

 1   (

r

n

)  1  

a n

 1 

x r

n

 0 We now work with the coefficient on

x r+n

:

a n

 2 

r

n



r

n

 1   (

r

n

)  1  

a n

 1  0 It follows that

a n

  2 

r

n



r

n a n

  1 1   (

r

n

)  1   2 

r

n

 2

a n

 1  3 (

r

n

)  1    2 

r

n

 

a n

1    1 

r

n

  1  ,

n

 1

Example 1: First Root

(7 of 13) We have

a n

   2 

r

n

 

a n

1    1 

r

n

  1  , for

n

 1 ,

r

1  1 and

r

2  1 / 2 Starting with

r

1 = 1, this recursion becomes

a n

   2  1 

n

 

a

1

n

   1  1 

n

  1     2

n a n

  1 1 

n

,

n

 1 Thus

a

1  

a

0 3  1

a

2   5

a

1  2 

a

0

a

3   7

a

2  3    3  5  7

a

0  1  2  3  ,

a n

  3  5  7 (  1 )  

n a

0 2

n

 1  

n

!

,

n

 1 etc

Example 1: First Solution

(8 of 13) Thus we have an expression for the

n

-th term:

a n

  3  5  7 (  1 )  

n

2

a n

0  1  

n

!

,

n

 1 Hence for

x

> 0, one solution to our differential equation is

y

1 (

x

)    

n

 0

a n x n

r a

0

x

n

   1  3  5  (  1 )

n

7 

a

0  2

n x n

 1  1  

n

!

a

0

x

  1 

n

   1  3  5  7 (  1 )  

n x

2

n n

 1  

n

!

 

Example 1: Second Root

(10 of 13) Recall that

a n

   2 

r

n

 

a n

1    1 

r

n

  1  , for

n

 1 ,

r

1  1 and

r

2  1 / 2 When

r

2 = 1/2, this recursion becomes

a n

   2  1 / 2 

n

 

a n

1    1  1 / 2 

n

  1    2

n

n a n

  1 1 / 2   

n

 2

a n n

 1  1  ,

n

 1 Thus

a

1  

a

0 1  1

a

2   2

a

1  3 

a

0

a

3

a n

  3

a

 2 5    1  2  3

a

0  1  3  5  ,    1  3  (  1 ) 5  

n a

0 2

n

 1  

n

!

, etc

n

 1

Example 1: Second Solution

(11 of 13) Thus we have an expression for the

n

-th term:

a n

  1  3  5 (  1 )  

n

2

a n

0  1  

n

!

,

n

 1 Hence for

x

> 0, a second solution to our equation is

y

2 (

x

) 

n

   0

a n x n

r

a

0

x

1 / 2 

n

   1  1  ( 3   1 ) 5

n

a

0

x

 2

n n

 1 /  2 1  

n

!

a

0

x

1 / 2   1 

n

   1  1  3  (  1 ) 5  

n

2

n x n

 1  

n

!

 

Example 1: General Solution

(13 of 13) The two solutions to our differential equation are

y

1 (

x

) 

x

  1 

n

   1  3  5  7 (  1 ) 

n

 2

x n n

 1  

n

!

 

y

2 (

x

) 

x

1 / 2   1 

n

   1  1  3  (  1 ) 5  

n

2

n x n

 1  

n

!

  Since the leading terms of

y

1 it follows that

y

1 and

y

2 and

y

2 are

x

and

x

1/2 , respectively, are linearly independent, and hence form a fundamental set of solutions for differential equation.

Therefore the general solution of the differential equation is

y

(

x

) 

c

1

y

1 (

x

) 

c

2

y

2 (

x

),

x

 0 , where

y

1 and

y

2 are as given above.

Shifted Expansions

For the analysis given in this section, we focused on

x

= 0 as the regular singular point. In the more general case of a singular point at

x

=

x

0 , our series solution will have the form

y

(

x

)  

x

x

0 

r n

   0

a n

x

x

0 

n