Transcript Slide 1

BioHarvesting: Use of Natural Forms
For Photonics
Richard A. Vaia
Air Force Research Laboratory,
Materials & Manufacturing Directorate
Funding:
Bio-Inspired Concept Theme, Air Force Office of Scientific Research (AFOSR)
Asian Office of Aerospace Research & Development (AOARD)
Air Force Research Lab/Materials & Manufacturing Dir. (AFRL/ML)
Collaborative Center for Polymer Photonics (CCPP)
BioHarvesting Natural Forms
Team
Prof. Sergei Lyuksyutov
Prof. Liming Dia
Prof. Edwin Thomas
Sam Ha
Edwin Chan
Prof. Paul Matsudaira
Jennifer Shin
Dr. Andrew Smith
Dr. Terje Dokland
Prof. Vernon Ward
Jason Brunton
Univ. Akron
Univ. Akron
MIT
MIT
MIT/U. Mass
Whitehead Institute
Whitehead Institute
Natural History Museum, London, UK
Inst. Molecular and Cell Biology, Singapore
Univ. Otago
Univ. Otago
Shane Juhl
Ryan Kramer
Dr. Corey Radloff
Dr. Morley Stone
Dr. Rajesh Naik
Dr. Joe Constantino
Dr. Barry Farmer
John Murry
AFRL/ML
AFRL/ML
AFRL/ML
AFRL/ML
AFRL/ML
AFRL/ML
AFRL/ML
AFRL/ML
BioHarvesting Natural Forms
For Photonics
Introduction:
Photonic Band
Gap Materials
Bio-Templating
Scaffolds and TopDown Replication
Bio-Colloids
Self, Forced &
Directed Assembly
Summary
Photonic Band Gap Materials
(PBGs)
Periodicity (L)
+
Dielectric Contrast (e)
+
Geometry
=
forbidden frequency for
wave propagation
(photonic band gap)
a
0.3a, e =12.96
0.7a, e=1
Periodic Potential:
efluct(r)
Periodic function:
E(r)
e(x) = e0efluct(x)
2
2
2
  E     E  2 e fluct r E  2 e 0 E



S. John, Univ. Toronto
c
c
Andrew Reynolds, Univ. Glasgow
Photonic Band Gap Materials
(PBGs)
Periodicity (L)
+
Dielectric Contrast (e)
+
Geometry
=
forbidden frequency for
wave propagation
(photonic band gap)
2r
k
k
morphology
<ls>
Random
continuum
ls
Periodic
Challenge:
Approaches for ‘Large Area’ PBG Fabrication
Methods to form ordered, anisotropic structures
•Microcontact printing
• Trade-offs
•Block copolymer templating
• Cost-effect, rapid access
•Colloidal crystal processing
to ‘complex’ structures
•Lithography (nano)
• ‘Defect’ engineering
•Holography
•TPA MicroFab
Role for
•Surfactant(micelle) directed
Natural Forms?
•Pattern-directed dewetting
Bio-chemical Approaches?
•Polyelectrolyte deposition
3d silicon arrays
•….
Selenium, inverse FCC
Braun, et. al, Adv. Mat
Lin et. al., MRS
Woodpile
E. Ozbay; S. Noda;
S. Lin
Microcircuitry
Joannopoulis
Structural Color in Nature
Scattering
Rayleigh
Interference / Iridescence
• 1D:
• 2D:
• 3D:
Morpho Butterfly, Abalone
Shells, Humming Bird
Sea Mouse
Opals
Structure and Form in Nature
Top-Down: Replication
Bottom-Up: Assembly
100 nm
Sara, M.; et al
J. Bacteriol. 2000, 182(4), 859.
scale bar = 15 nm
Scheuring, S.; et al. Mol. Microbiol.
2002, 44(3), 675-684.
Chem. Mater. 9: 1731-1740,
1997
Proc. Natl. Acad. Sci. 95: 6234-6238, 1998
BioHarvesting Natural Forms
For Photonics
Introduction:
Photonic Band
Gap Materials
Bio-Templating
Scaffolds and TopDown Replication
Bio-Colloids
Self, Forced &
Directed Assembly
Summary
Mathematician’s Cidaris Cidaris
Skeletal graph of the P-surface
Gap Map
4.6
Schwartz’s P-Surface
“Plumber’s Nightmare”
contrast
Refractive index
4.4
4.2
4.0
2-3
Gap Closes
3.75:1
3.8
3.6
5-6
Gap Closes
3:1
3.4
3.2
3.0
5
10
Vo
15
20
lum
e fr
25
ac t
ion
30
(%
35
)
40
45
0.60
0.55
0.50
0.45 )
Image from
0.40 (c/a
http://www.msri.org/publications/sgp/ji
y
0.35
nc
e
0.30
m/geom/level/skeletal/index.html
qu
0.25
fre
0.20
Level Set Equation
10(cosx + cosy + cosz) – 5(cosx cosy + cosy cosz + cosz cosx) = t
Ha, et al.
Various Stereom Morphologies
Smith, A.B. “The stereom microstructure of the
echinoid test.” Special Papers in Palaeontology,
25, p.1 (1981).
Ha, et al.
Andrew B. Smith
Department of Paleontology,
Natural History Museum
Size Reduction & Infiltration Scheme
Native Structure
Ha, et al.
Inverse SiO2 Structure