Transcript Slide 1
BioHarvesting: Use of Natural Forms For Photonics Richard A. Vaia Air Force Research Laboratory, Materials & Manufacturing Directorate Funding: Bio-Inspired Concept Theme, Air Force Office of Scientific Research (AFOSR) Asian Office of Aerospace Research & Development (AOARD) Air Force Research Lab/Materials & Manufacturing Dir. (AFRL/ML) Collaborative Center for Polymer Photonics (CCPP) BioHarvesting Natural Forms Team Prof. Sergei Lyuksyutov Prof. Liming Dia Prof. Edwin Thomas Sam Ha Edwin Chan Prof. Paul Matsudaira Jennifer Shin Dr. Andrew Smith Dr. Terje Dokland Prof. Vernon Ward Jason Brunton Univ. Akron Univ. Akron MIT MIT MIT/U. Mass Whitehead Institute Whitehead Institute Natural History Museum, London, UK Inst. Molecular and Cell Biology, Singapore Univ. Otago Univ. Otago Shane Juhl Ryan Kramer Dr. Corey Radloff Dr. Morley Stone Dr. Rajesh Naik Dr. Joe Constantino Dr. Barry Farmer John Murry AFRL/ML AFRL/ML AFRL/ML AFRL/ML AFRL/ML AFRL/ML AFRL/ML AFRL/ML BioHarvesting Natural Forms For Photonics Introduction: Photonic Band Gap Materials Bio-Templating Scaffolds and TopDown Replication Bio-Colloids Self, Forced & Directed Assembly Summary Photonic Band Gap Materials (PBGs) Periodicity (L) + Dielectric Contrast (e) + Geometry = forbidden frequency for wave propagation (photonic band gap) a 0.3a, e =12.96 0.7a, e=1 Periodic Potential: efluct(r) Periodic function: E(r) e(x) = e0efluct(x) 2 2 2 E E 2 e fluct r E 2 e 0 E S. John, Univ. Toronto c c Andrew Reynolds, Univ. Glasgow Photonic Band Gap Materials (PBGs) Periodicity (L) + Dielectric Contrast (e) + Geometry = forbidden frequency for wave propagation (photonic band gap) 2r k k morphology <ls> Random continuum ls Periodic Challenge: Approaches for ‘Large Area’ PBG Fabrication Methods to form ordered, anisotropic structures •Microcontact printing • Trade-offs •Block copolymer templating • Cost-effect, rapid access •Colloidal crystal processing to ‘complex’ structures •Lithography (nano) • ‘Defect’ engineering •Holography •TPA MicroFab Role for •Surfactant(micelle) directed Natural Forms? •Pattern-directed dewetting Bio-chemical Approaches? •Polyelectrolyte deposition 3d silicon arrays •…. Selenium, inverse FCC Braun, et. al, Adv. Mat Lin et. al., MRS Woodpile E. Ozbay; S. Noda; S. Lin Microcircuitry Joannopoulis Structural Color in Nature Scattering Rayleigh Interference / Iridescence • 1D: • 2D: • 3D: Morpho Butterfly, Abalone Shells, Humming Bird Sea Mouse Opals Structure and Form in Nature Top-Down: Replication Bottom-Up: Assembly 100 nm Sara, M.; et al J. Bacteriol. 2000, 182(4), 859. scale bar = 15 nm Scheuring, S.; et al. Mol. Microbiol. 2002, 44(3), 675-684. Chem. Mater. 9: 1731-1740, 1997 Proc. Natl. Acad. Sci. 95: 6234-6238, 1998 BioHarvesting Natural Forms For Photonics Introduction: Photonic Band Gap Materials Bio-Templating Scaffolds and TopDown Replication Bio-Colloids Self, Forced & Directed Assembly Summary Mathematician’s Cidaris Cidaris Skeletal graph of the P-surface Gap Map 4.6 Schwartz’s P-Surface “Plumber’s Nightmare” contrast Refractive index 4.4 4.2 4.0 2-3 Gap Closes 3.75:1 3.8 3.6 5-6 Gap Closes 3:1 3.4 3.2 3.0 5 10 Vo 15 20 lum e fr 25 ac t ion 30 (% 35 ) 40 45 0.60 0.55 0.50 0.45 ) Image from 0.40 (c/a http://www.msri.org/publications/sgp/ji y 0.35 nc e 0.30 m/geom/level/skeletal/index.html qu 0.25 fre 0.20 Level Set Equation 10(cosx + cosy + cosz) – 5(cosx cosy + cosy cosz + cosz cosx) = t Ha, et al. Various Stereom Morphologies Smith, A.B. “The stereom microstructure of the echinoid test.” Special Papers in Palaeontology, 25, p.1 (1981). Ha, et al. Andrew B. Smith Department of Paleontology, Natural History Museum Size Reduction & Infiltration Scheme Native Structure Ha, et al. Inverse SiO2 Structure