Transcript Slide 1

Summer 2008
Sylabus
Biophysics II
Cell Biophysics
English: RM224, 15:15-18:30
Lecture notes with the according references will be published in the www.
1.
2.
3.
4.
5.
6.
Basic Cell Biology
Membrane Biophysics
Active and Passive Physics of the Cytoskeleton
Intracellular Transport
Neurophysics
Photosynthesis
Membrane Biophysics
Textbooks
•Life - As a Matter of Fat. The Emerging Science of Lipidomics von O. G.
Mouritsen von Springer, Berlin (Gebundene Ausgabe - Januar 2005)
• Cevc, G. and Marsh, D. 1987. Phospholipid bilayers. Physical principles and
models. Wiley-Interscience, New York.
•Intermolecular and Surface Forces (Academic, London, 1992)
J Israelachvili
•de Gennes, P.G. and Prost, J (1993). The Physics of Liquid Crystals. Oxford:
Clarendon Press. ISBN 0-19-852024-7.
Entropie
S = Entropie
W = Zahl von Zuständen (Konfigurationen)
die einen thermodynamischen System mit
Energie E zugänglich sind
Freie Energie F = U – TS
U: internal energy
Entropische Abstoßung
thermisch fluktuierender
Membranen
Literatur:
Reinhard Lipowsky, The conformation of membranes, Nature, Vol. 349, p. 475 (7 Febr 1991)
Entropische Kräfte:
Eine entropische Kraft ist nicht durch fundamentale mikroskopische Kräfte
bestimmt sonder durch den thermodynamischen Gesamtzustand des Systems.
Entropische Käfte treten auf wenn sich das System „wehrt“ gegen einen
Entropieverlust. Es ist charakteristisch für diese Kräfte, dass sie mit der Temoeratur
zu nehmen.
Van der Waals Potential
Die anziehende Van der Waals Wechselwirkung resultiert auf molekularer
Ebene aus dem Einfluss gegenseitig induzierter Dipolmomente. Die aufwändige
Herleitung erfolgt üblicherweise über die Lifshitz-Theorie. Der allgemeine Fall
der Wechsel-wirkung zweier Schichtsysteme über eine Grenzschicht wurde von
Parsegian und Ninham hergeleitet. Darauf beruht die ausführliche Betrachtung
von Fenzl für den Fall der Wechselwirkung zwischen zwei Membranen.
Betrachte eine thermisch fluktuierende Zellmembran, die sich nahe an einer anderen
Oberfläche befindet.
Membranfluktuationen, die eine Wellenlänge Lmax überschreiten sind durch die
einschränkende Oberfläche nicht mehr möglich. Der Verlust and Entropie
S = Sbound – Sfree kann abgeschätzt werden über den Verlust der Anzahl von
möglichen Moden.
Anzahl der nicht mehr möglichen Moden proportional zu :
=> Fluktuationsabstoßungskraft pro Flächenelement:
Adhäsionsübergang
T < Tu
Die Fluktuations-Wechselwirkung spielt vor allem
für den thermisch induzierten Adhäsionsübergang
eine Rolle.
T > Tu
Kritische Entbindungstemperatur Tu
Sterische Stabilisierung von Kolloiden
•Kolloide sind mit einer Polymerschicht
überzogen.
•Überlapp führt zu einer
entropischenAbstoßung (Verkleinerung des
Konfigurationsraums der Polymere).
•Gleichgewicht zwischen van-der-WaalsKräfte und entropischerAbstoßung.
Hydrationskräfte
Aus Messungen der lamellaren Periode d in multilamellaren Vesikeln bei
verschiedenen osmotischen Drücken wurde die Existenz einer kurzreichweitigen
repulsiven Wechselwirkung postuliert. Der hydrophile Charakter der Phospholipide
führt zu einer Absenkung der freien Energie, wenn die hydrophilen Kopfgruppen
mit Wasser umgeben sind. Die Ausbildung einer endlichen Wasserschicht
zwischen den Membranen wird begünstigt. Dies führt zu dem Auftreten der so
genannten Hydrationswechselwirkung. Sie wird durch den empirischen Ansatz
mit H0 typischerweise in der Größenordnung von wenigen kBT Å-2 und lh = 2Å
beschrieben. Die theoretische Beschreibung der Wechselwirkung wird noch
immer kontrovers diskutiert. Der empirische Ansatz ist jedoch gut bestätigt.
3. Active and Passive Physics of the Cytoskeleton
3.1 Fundamental Polymer Physics
Literatur:
• M. Doi and S. F. Edwards, The Theory of Polymer Dynamics, Oxford Press
• M. Doi, Introduction to Polymer Physics, Oxford Press
Polymer
A polymer is a large molecule (macromolecule) composed of repeating structural units connected by
covalent chemical bonds. The word is derived from the Greek, πολυ, poly, "many"; and μέρος, meros, "part".
Well known examples of polymers include plastics, DNA and proteins. A simple example is polypropylene.
While "polymer" in popular usage suggests "plastic", the term actually refers to a large class of natural and
synthetic materials with a variety of properties and purposes. Natural polymer materials such as shellac and
amber have been in use for centuries. Biopolymers such as proteins and nucleic acids play crucial roles in
biological processes. A variety of other natural polymers exist, such as cellulose, which is the main
constituent of wood and paper. Some common synthetic polymers are Bakelite, neoprene, nylon, PVC
(polyvinyl chloride), polystyrene, polyacrylonitrile and PVB (polyvinyl butyral). Polymers are studied in the
fields of polymer chemistry, polymer physics, and polymer science.
Polypropylene
Starting in 1811 Henri Braconnot did pioneering work in derivative cellulose compounds, perhaps the earliest
important work in polymer science. The term polymer was coined in 1833 by Jöns Jakob Berzelius. The
development of vulcanization later in the nineteenth century improved the durability of the natural polymer
rubber, signifying the first popularized semi-synthetic polymer. In 1907, Leo Baekeland created the first
completely synthetic polymer, Bakelite, by reacting phenol and formaldehyde at precisely controlled temperature
and pressure. Bakelite was then publicly introduced in 1909.
Polyethylene
Polyethylene or polythene (IUPAC name poly(ethene)) is a thermoplastic
commodity heavily used in consumer products (notably the plastic shopping bag).
Over 60 million tons of the material are produced worldwide every year.
Freely rotating chain
Polymer backbone
displays no bending
stiffness
 flexible polymer chain
Ideal chain
An ideal chain (or freely-jointed chain) is the simplest model to describe a polymer. It only assumes a polymer
as a random walk and neglects any kind of interactions among monomers. Although it is simple, its generality
gives us some insights about the physics of polymers.
In this model, monomers are rigid rods of a fixed length l, and their orientation is completely independent of the
orientations and positions of neighbouring monomers, to the extent that two monomers can co-exist at the same
place.
N monomers form the polymer, whose total unfolded length is:
, where N is the number of monomers.
In this very simple approach where no interactions between monomers are considered, the energy of the polymer
is taken to be independent of its shape, which means that at ,thermodynamic equilibrium, all of its shape
configurations are equally likely to occur as the polymer fluctuates in time, according to the Maxwell-Boltzmann
distribution.
Let us call the total end to end vector of an ideal chain and
the vectors corresponding to individual
monomers. Those random vectors have components in the three directions of space. Most of the expressions
given in this article assume that the number of monomers N is large, so that the central limit theorem applies.
The central limit theorem (CLT) states that the sum of a large number of independent and
identically-distributed random variables will be approximately normally distributed (i.e., following a
Gaussian distribution, or bell-shaped curve) if the random variables have a finite variance.
The figure below shows a sketch of a (short) ideal chain.
Since are independent, it follows from the Central limit theorem that
is distributed
according to a normal distribution (or gaussian distribution): precisely, in 3D, Rx,Ry, and Rz
are distributed according to a normal distribution of mean 0 and of variance:
Polymer size:
Real Chains
Solvent and temperature effect
where Rg is the radius of gyration of the polymer, N is the number of bond segments (N, which is the
degree of polymerization) of the chain.For good solvent, ν = 3 / 5; for bad solvent, ν = 1 / 3. Therefore
polymer in good solvent has larger size and behaves like a fractal object. In bad solvent it behaves like a
solid sphere. In the so called θ solvent, ν = 1 / 2, which is the result of simple random walk. The chain
behaves as if an ideal chain. The quality of solvent depends also on temperature. For a flexible polymer, low
temperature may correspond to poor quality and high temperature makes the same solvent good. At a
particular temperature called theta (θ) temperature, the solvent behaves as if an ideal chain.
Excluded volume interaction
The simplest formulation of excluded volume is the , a random walk that cannot repeat its previous path. A
path of this walk of N steps in three dimensions represents a conformation of a polymer with excluded
volume interaction. Because of the self-avoiding nature, the number of possible conformation is
significantly reduced. The radius of gyration is generally larger than that of ideal chain.
Entropic elasticity of an ideal chain
If the two free ends of an ideal chain are attached to some kind of micro-manipulation device,
then the device experiences a force exerted by the polymer. The ideal chain's energy is
constant, and thus its time-average, the internal energy, is also constant, which means that
this force necessarily stems from a purely entropic effect.
This entropic force is very similar to the pressure experienced by the walls of a box containing
an ideal gas. The internal energy of an ideal gas depends only on its temperature, and not on
the volume of its containing box, so it is not an energy effect that tends to increase the volume
of the box like gas pressure does. This implies that the pressure of an ideal gas has a purely
entropic origin.
What is the microscopic origin of such an entropic force or pressure? The most general answer
is that the effect of thermal fluctuations tends to bring a thermodynamic system toward a
macroscopic state that corresponds to a maximum in the number of microscopic states (or
micro-states) that are compatible with this macroscopic state. In other words, thermal
fluctuations tend to bring a system toward its macroscopic state of maximum entropy.
is proportional to
.
Homework 7
• Finde Beispiele für die entropische Abstoßung durch thermodynamische
Fluktuationen!
• Was versteht man unter Depletion Forces?