Transcript Slide 1
Does Nature respect (gauge) Symmetry? DISCOVERY and beyond: What’s next in Higgs physics 1 REGINA DEMINA (UNIVERSITY OF ROCHESTER) PHASE OF THE WAVE FUNCTION • First lecture on quantum mechanics – introduce wave function, but only define (Wave function Y)2 dV=probability to find particle in volume dV. • While probability is a real number, wave function is a complex number. It has a phase. • When two matter waves meet we add wave functions, not probabilities! Interference can be observed phase is 2 important! GAUGE INVARIANCE = NONOBSERVABILITY OF THE PHASE For some reason Nature goes to great length to hide the phase of the wave function from us Preserve gauge invariance • Gauge invariance - Fundamental symmetry of nature, so Langrangian must be invariant under gauge (phase) transformation: y (x) ® eiay (x) • According to Noether’s theorem, symmetry (==nonobservability) leads to conserving quantity • If a is the same everywhere – global gauge invariance (leads to e.g. baryon number conservation) 3 LOCAL GAUGE INVARIANCE • Local gauge invariance: a(x) –– phase depends on 4 dimensional spacetime coordinate x • Demanding local gauge invariance leads to interactions via gauge fields • E.g. U(1) gauge group, leads to EM interactions and charge conservation 4 ELECTRO-WEAK INTERACTIONS Transformation group Conserved quantity Gauge field Group properties Fermion masses U(1) – QED SU(2)L –Weak Q (scalar) electric charge EM interaction T (doublet) weak isospin Photons M(g)=0 W-boson M(W)=80GeV Z-boson M(Z)=91 GeV Abelian (commutative) group – photons do not interact with each other added by hand without breaking gauge invariance Weak interactions Non-Abelian group – W and Z do interact with each other cannot be added by hand without breaking gauge invariance 5 ELECTROWEAK SYMMETRY BREAKING F. ENGLERT AND R. BROUT, PHYS. REV. LETT. 13 (1964) 321 P.W. HIGGS,, PHYS. REV. LETT. 13(1964) 508, G. S. GURALNIK, C. R. HAGEN, AND T.W. B. KIBBLE, PHYS. REV. LETT. 13 (1964) 585 Problem #1: W and Z boson masses violate SU(2)L gauge invariance Solution: Postulate #1 There exists a scalar complex field doublet f •Mexican hat (bottle’s bottom) potential V (f ) (v f f (f f ) ) 2 * * 2 •The Universe chose to roll into a minimum at fmin •Non-zero v generates masses for W and Z-bosons v/ 2 • Absorb 3/ 4 degrees of freedom • Given W mass (muon decay rate) v is constrained to be 246 GeV • Predict ratio between W and Z masses - verified in experiment •One remaining d.o.f. – H (aka Higgs) boson (s=0, P=+) 6 H BOSON • Expand f near its minimumf [v h( x)] / 2 v constrained by MW - free parameter • Lagrangian 1 m L [( igAm )(v h)( m igAm )(v h)] 2 1 2 1 1 m 2 4 m (v h) (v h) F Fm 2 4 4 • • • • (g2v2/2)AmAm – mass term for gauge bosons v2h2 – mass term for the scalar boson itself h3,h4 –self interaction terms hAA, h2AA – interaction with gauge fields terms 7 Higgs mass is not predicted This is what we were after Byproducts Strength of these terms is predicted given (MH) HIGGS MECHANISM OF FERMION MASS GENERATION Problem #2: fermion masses violate SU(2)L gauge invariance Solution: Postulate #2 • Yukawa-like couplings to fermions – generate fermion masses in a gauge invariant way through interaction with Higgs field • This mechanism does not reduce the number of free parameters in the model, masses are traded for the strength of interaction with the Higgs field (gf) 1 mf gfv 2 1 g f v( f L f R f R f L ) 2 8 TESTABLE PREDICTIONS • Existence of a true scalar boson (s=0, P=+1) • Find the resonance • measure its spin, parity • Couplings to gauge bosons • Probing custodial symmetry (between W and Z-bosons) – one of best motivated symmetries given that the new state is responsible for breaking the EW symmetry • Couplings to fermions • New state can be responsible for EW symmetry breaking but NOT for generation of fermionic masses – fermiophobic Higgs • Self coupling • h3,h4 –self interaction terms arise from the same assumption as couplings to gauge fields. Interesting to test their absolute and relative strength • Require large statistics to observe 9 HIGGS PRODUCTION @ LHC Gluon Fusion - dominant process Vector Boson Fusion 20% of gg @ 120GeV Associated Production W or Z (1-10% of gg) Associated Production ttbar or bbbar (1-5% of gg) 4 production mechanism key to measure H-boson parameters 10 LHC AT CERN Alps 7/17/2015 • Large Hadron Collider located in Europe (France and Switzerland) • Circumference 27 km; • 7TeV(2010-2011)8TeV (now)14 Tev(2014) • LHC has uncovered the mechanism behind mass - 2012 • Discovery of a particle that might be known as Higgs boson Lecture I 11 APPARATUS: LHC 7/17/2015 Lecture I 12 APPARATUS: CMS 7/17/2015 Lecture I 13 4 JULY, 2012 F. Englert, P.W. Higgs, C. R. Hagen, G. S. Guralnik J. Incandela 14 HIGGS TO TWO PHOTONS CMS COLLABORATION: PHYS. LETT. B 716 (2012) 30-61 ATLAS COLLABORATION: PHYS. LETT. B 716 (2012) 1-29 15 DI-PHOTON SPECTRUM 7/17/2015 Lecture XII 16 HZZ*4L 7/17/2015 Lecture XII 17 HZZ*4L 7/17/2015 Lecture XII 18 COMBINED P-VALUE 7/17/2015 Lecture XII 19 PROJECTED SIGNAL Current status: signal observed in ZZ, gg and WW modes There is some evidence (Tevatron) for bbbar coupling Projected signal by the end of the run 20 OBSERVABLES • the framework to probe the Higgs couplings issued by the “low mass” LHCXS WG and endorsed by both CMS and ATLAS: arXiv:1209.0040 • Overall signal strength m 21 DISENTANGLING COUPLING FROM PRODUCTION AND DECAY VBF production – sensitive to vector boson couplings ggH – sensitive to quark loops; Hgg – fermion+W loop HWW, ZZ – vector boson coupling at decay 22 DISENTANGLING COUPLING FROM PRODUCTION AND DECAY kVkF - scale vector and fermion coupling Kg(kV, kF) – coupling to g, depends on W and fermion loops (Hgg) ggH – sensitive to quark loops; HWW, ZZ – vector boson coupling No direct Higgs to fermion couplings observed yet, limits on Htt, Hbb 23 CURRENT STATUS: TESTING CUSTODIAL SYMMETRY • WZ: ratio of scale factors for W and Z • The measurement of the HWW/HZZ ratio is mostly driven by the ratio of the Higgs couplings to WW and ZZ, which is protected by custodial symmetry • Combination of “inclusive” WW and ZZ yields gives Rww/zz=0.9+1.1-0.6 24 MORE TESTS TO COME • lq: ratio of scale factors for leptons and quarks • kV left floating in the fit • du: ratio of scale factors for down and up type of fermions • kV left floating in the fit • kg- kg: contour of loop scale factors • BRInv,Undet: same as kg- kg but with a scale factor in the total width accounting for invisible or undetectable decay modes 25 SPIN MEASUREMENT ARXIV:1208.4018 • Xgg excludes s=1 option (Landau-1948, Yang -1950) • XZZ4l system is described by 5 non-trivial angles Different scenarios result in distinct angular distributions 2+m 02+h 0+m 0+m 2+h 2+m 26 COMPARING SPIN-PARITY HYPOTHESES • Matrix Element Likelihood Analysis (MELA) allows for optimal separation of different sP hypotheses XZZ4l 0+(SM) vs 0- hypothesis Expected significance of hypotheses separation based on 35 fb-1 27 MELA – was already used to separate signal from bg SM H(125 GeV) Bg:ZZ Data w.r.t 126 GeV Higgs Expectation 28 SUMMARY • Observed narrow resonance at 125.3+-0.6 GeV couples to weak gauge bosons, hence it is potentially responsible for the EW symmetry breaking • To verify this hypothesis it is necessary to show that its properties are consistent with the predictions: • Spin=0, Parity =+ • An angular based analysis is developed that has a potential to exclude pseudoscalar and tensor hypotheses based on 35 fb-1 • The framework is developed to independently measure • Vector and fermion couplings • W and Z boson couplings • Lepton and quark couplings 29