Transcript Folie 1
Themes and challenges of Modern Science Complexity out of simplicity – Microscopic How the world, with all its apparent complexity and diversity can be constructed out of a few elementary building blocks and their interactions individual excitations of nucleons Simplicity out of complexity – Macroscopic How the world of complex systems can display such remarkable regularity and simplicity vibration rotation fission The three faces of the shell model Experimental single-particle energies γ-spectrum single-particle energies 1 i13/2 1609 keV 2 f7/2 896 keV 1 h9/2 0 keV 209 83 Bi126 208Pb → 209Bi Elab = 5 MeV/u Experimental single-particle energies γ-spectrum 208Pb single-hole energies 3 p3/2 898 keV 2 f5/2 570 keV 3 p1/2 0 keV 207 82 Pb125 → 207Pb Elab = 5 MeV/u Experimental single-particle energies particle states 209Bi 2 f7/2 1609 keV 896 keV 1 h9/2 0 keV 1 i13/2 208 82 209Pb energy of shell closure: Pb126 BE(209Bi) BE(208Pb) E(1h9 / 2 ) BE(207Tl ) BE(208Pb) E(3 s1/ 2 ) E 1h9 / 2 E (3 s1/ 2 ) BE( 209Bi) BE( 207Tl ) 2 BE( 208Pb) 4.211MeV 207Tl 207Pb BE(209Pb) BE(208Pb) E(2 g9 / 2 ) BE(207Pb) BE(208Pb) E(3 p1/ 2 ) hole states protons neutrons E 2 g9 / 2 E (3 p1/ 2 ) BE( 209Pb) BE( 207Pb) 2 BE( 208Pb) 3.432 Level scheme of 210Pb 2846 keV 2202 keV 1558 keV 1423 keV 779 keV 0.0 keV -1304 keV (pairing energy) M. Rejmund Z.Phys. A359 (1997), 243 209 82 Pb127 Evolution of nuclear structure as a funtion of nucleon number Experimental observables in even-even nuclei 1000 E (41 ) R4 / 2 E (21 ) 4+ B ( E2; 41 21 ) 400 2+ B ( E2; 21 01 ) 0 E ( keV) 0+ Jπ 1 BE 2; J i J f f M E 2 i 2 Ji 1 2 Systematics of the Te isotopes (Z=52) (Z = 52) Neutron number 68 70 72 74 76 78 80 82 Val. Neutr. number 14 12 10 8 6 4 2 0 Systematics of the Te isotopes (Z=52) (Z = 52) 2+ 0+ 4 1.63 1.59 4+ 1.16 1.20 1.10 + 2+ 2+ 2+ 6+ 4+ 1.69 1.58 2+ 1.28 0.84 0.56 0+ 0+ 120Te 0+ 130Te 134Te Case of few valence nucleons: lowering of energies, development of multiplets. R4/2 → ~2-2.4 Electric fields of multipoles d r r (Z = 52) In general the electric potential due to an arbitrary charge distribution is p r ' U r d ' r r' expansion 1 r ' 4 1 Ym , Y*m ' , ' r r' 2 1 m 0 r multipole moments M * , m p r ' r ' Y*m ' , 'd ' m2 4 3 1Z e R0 M 2 , m special case: electric quadrupole potential matrixelement U r Y 2,m , 2 M * 2, m 3 4 m 2 5 r B(E2)-value: B( E 2; I i I f ) I f M f K f M * 2, m I i M i K i 2 * Mfm 2