Non-linear Regression Analysis

Download Report

Transcript Non-linear Regression Analysis

Non-linear Regression Analysis
with Fitter Software Application
Alexey Pomerantsev
Semenov Institute of Chemical Physics
Russian Chemometrics Society
12.02.02
1
Agenda
1. Introduction
2. TGA Example
3. NLR Basics
4. Multicollinearity
5. Prediction
6. Testing
7. Bayesian Estimation
8. Conclusions
12.02.02
2
1. Introduction
12.02.02
3
Linear and Non-linear Regressions
Linear
f  a11 ( x)   a p p ( x)
any
f (pa, xp)( x)
f f=aa1exp(-20x)
1 ( x)  
f=exp(-ax)
a
Formula
Example
Source
Choice
Dimension
Soft
Interpretation
Soft Tools
12.02.02
Hard
Close relatives?
Multicollinearity
Purpose
Non Linear
any f (a, x)
Easy ?
Large
Difficult ?
Small
Excess of parameters
Well-known
Interpolation
Many
Lack of data
Uncommon
Extrapolation
Few
4
2. Thermo Gravimetric Analysis Example
Object
Goal
PVC Cable Isolation
Let’s see it!
Service-Life Prediction
Experiment
Thermo Gravimetric Method
Tool
Non-Linear Regression and Fitter
12.02.02
5
TGA Experiment and Data
TGA Experiment
TGA Data
510
Sample
490
0.98
470
0.96
450
430
0.94
410
0.92
390
0.90
HEAT
Temperature T , K
Plasticizer
Chamge in mass, y
1.00
370
0
10
20
30
40
50
Time t , min
This is Experiment! Not a Hell of Flame!
12.02.02
6
TGA Example Variables
Estimated
Measured
Intermediate
Response
y=m/m
Change in mass
0
Predictors
t
Time
C
Plasticizer concentration
Small size
problem!
Parameters
y0
Initial value of y
C0
Initial concentration
k0
Evaporation rate constant
v
T0
Heating rate
E
Activation energy
F
Sample specific surface
Initial temperature
Sample specific surface F  S  22 R 2
V R -r
12.02.02
7
Plasticizer Evaporation Model
Evaporation Law
dy  -k C, y(0)  y
0
dt
Diffusion is
not relevant!
Volume Change
The Arrhenius law
Temperature growth
12.02.02
C  1-
1- C0
y
æ
ç
ç
ç
è
ö
E
÷
k  F exp k0 ÷
RT ÷ø
T=T0+vt
8
Fitter Worksheet for TGA Example
A
B
C
D
E
F
C
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
F
2.4
2.4
2.4
2.4
2.4
2.4
2.4
2.4
2.4
2.4
t
0.00
1.15
2.25
3.40
4.55
5.65
6.75
7.85
9.00
10.10
0.4
0.4
0.4
0.4
0.4
2
2
2
2
2
3E+06
5E+06
8E+06
1E+07
1E+07
G
H
I
J
K
L
M
N
y
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
f
1.001
1.001
1.001
1.001
1.001
1.001
1.001
1
1
1
Left
1.001
1.001
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
'TGA Desorbtion Model
D[y]/D[t]=-k*[1-(1-C0)/y];y(0)=y0
k=F*exp(k0-E/R/T)
T=T0+v*t
R=1.98717
y0=?
k0=?
E=?
0.931
0.871
0.821
0.781
0.748
0.915
0.844
0.788
0.746
0.714
Parameters estimation
Name Initial
Final
Deviation
y0
1 1.00088
0.0002
k0
10 13.9964 0.24016
10000 18052.3 225.424
E
O
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
Data
v T0
3 373
3 373
3 373
3 373
3 373
3 373
3 373
3 373
3 373
3 373
0
0
0
0
0
12.02.02
293
293
293
293
293
9
Service Life Prediction by TGA Data
12.02.02
10
3. NLR Basics
12.02.02
11
Data and Errors
Response
y1
y2
.
.
.
.
y
yN
Predictors
x 11 x 12
x 21 x 22
.
.
.
.
.
.
.
.
.
.
.
Weights
x 1m
x 2m
Weight
is
.
.
.
.
a
w
X
.
.
an effective
.
.
instrument!
.
.
.
.
x N1 x N2
a1
a2
ap
x Nm
Absolute error
yi  f i  e i
Relative error
yi  f i (1  e i )
12.02.02
w1
w2
Parameters
wN
Fit
f1
f2
.
.
f
.
fN
Weight and variance
wi2  cov(e i , e i )  s e2  Const
12
Model f(x,a)
'Цикл "увлажнение-сушка"
M=Sor*hev(t1-t)+Des*[hev(t-t1)+imp(t-t1)]
'Кинетика "увлажнения"
Sor=Sor1*hev(USESor1)+Sor2*[hev(-USESor1)+imp(-USESor1)]
'Кинетика "сушки"
Des=Des1*hev(USEDes1)+Des2*[hev(-USEDes1)+imp(-USEDes1)]
'Условие применимости асимптотик
USESor1=Sor2-Sor1
USEDes1=Des1-Des2
'константы и промежуточные величины
t3=(t-t1)*hev(t-t1)
t4=t*hev(t1-t)+t1*[hev(t-t1)+imp(t-t1)]
P2=PI*PI
P12=(PI)^(-0.5)
R=r*(M1-M0)*exp(-r*t4)
K=M1+(M0-M1)*exp(-r*t4)
V0=M0-C0
V1=M1-C0
'асимптотика сорбции при 0<t<tau
Sor1=C0+4*P12*(d*t)^0.5*[M0-C0+(M1-M0)*beta]
beta=1-exp(-z)
x=r*t
z=(a1*x+a2*x*x+a3*x*x*x)/(1+b1*x+b2*x*x+b3*x*x*x)
a1=0.6666539250029
a2=0.0121051017749
a3=0.0099225322428
b1=0.0848006232519
b2=0.0246634591223
b3=0.0017549947958
'кинетика сорбции при tau<t<t1
Sor2=K-8*S1
S1=U01/n0+U11/n1+U21/n2+U31/n3+U41/n4
n0=P2
U01=[(V0*n0*d-V1*r)*exp(-n0*d*t4)+R]/(n0*d-r)
n1=P2*9
U11=[(V0*n1*d-V1*r)*exp(-n1*d*t4)+R]/(n1*d-r)
n2=P2*25
U21=[(V0*n2*d-V1*r)*exp(-n2*d*t4)+R]/(n2*d-r)
n3=P2*49
U31=[(V0*n3*d-V1*r)*exp(-n3*d*t4)+R]/(n3*d-r)
n4=P2*81
U41=[(V0*n4*d-V1*r)*exp(-n4*d*t4)+R]/(n4*d-r)
'асимптотика десорбции при t1<t<t1+tau
Des1=K*[1-4*P12*(d*t3)^0.5]-8*S1
'кинетика десорбции при t1+tau<t
Des2=8*S2
S2=U02/n0+U12/n1+U22/n2+U32/n3+U42/n4
U02=(K-U01)*exp(-n0*d*t3)
U12=(K-U11)*exp(-n1*d*t3)
U22=(K-U21)*exp(-n2*d*t3)
U32=(K-U31)*exp(-n3*d*t3)
U42=(K-U41)*exp(-n4*d*t3)
'неизвестные параметры
d=?
M0=?
M1=?
C0=?
r=?
t1=?
Different shapes of the same model
Explicit model
Implicit model
Diff. equation
y = a + (b – a)*exp(–c*x)
Rather
d[y]/d[x] = – c (y –a); y(0) = b
complex
model!
0 = a + (b – a)*exp(–c*x) – y
*
Presentation at worksheet
' Explicit model
y=a+(b-a)*exp(-c*t)
a=?
b=?
c=?
12.02.02
'
Diff. equation
d[y]/d[t]=-c*(y-a); y(0)=b
a=?
b=?
c=?
13
Data & Model Prepared for Fitter
Predictor
A
B
1
2
3
4
5
6
7
8
9
10
11
C
D
Values
Response
Comment
Weight
E
F
G
H
I
J
K
L
M
Apply Fitter!
BoxBod Data
x
y w
f
0
0
0.00
1 109 1 90.11
2 149 1 142.24
3 149 1 172.41
5 191 1 199.95
7 213 1 209.17
10 224 1 212.91
Parameters
a
100
213.80941
b
0.4
0.5472375
'BoxBOD model
y=a*[1-exp(-b*x)]
a=?
b=?
y
200
100
0
0
Fitting
4
8
x
Equation
Parameters
12.02.02
14
Objective Function Q(a)
N
Sum of squares
S (a)  å wi2 ( yi - f i ) 2 g i2
i 1
[
]Q
Objective function
is a sum
Q(a )  Sof
(a )  Bsquares
(a )
and may be more…
Bayesian term
B(a )  s02 N 0  (a - b) t H (a - b)
Objective function
Parameter estimates
aˆ  arg min Q(a)
12.02.02
Weighted variance estimate
S (aˆ )
s 
Nf
2
Nf  N- p
15
Very Important Matrix A
Hesse’s
matrix
Gauss’
approximation
Aab
1 ¶ 2 Q (a )

, a , b  1,K, p
2 ¶aa ¶a b
A  V tV ( X t X in linear regression)
Matrix A is the
¶ f ( x , a)
V w
, a  1,..., p; i  1,.., N
cause of¶ a troubles..
Model
derivatives
ai
i
i
a
Covariance
matrix
C  s 2 A-1  F -1
F-matrix
F  s -2 A  C -1
12.02.02
16
Quality of Estimation
Covariances Matrix
Deviations Vector
cov (aˆ, aˆ )  C  s 2 A-1
dev (aˆa )  Caa
Matrix Acor (is
the
C
aˆ , aˆ ) 
C C
measure of quality!
a
Correlations Matrix
Final Objective Value
Error Variance and Number
Degrees of Freedom
12.02.02
ab
b
aa
bb
Q(aˆ)  min Q(a)
S (aˆ )
s 
Nf
2
Nf  N- p
17
Search by Gradient Method
Q (a ) 
Q(a n )  bnt (a - a n ) 
1
(a - a n ) t A (a - a n )
2
a n1  a n  A  bn
Matrix A is the
key
to
search!
a
Search problems
Initial point
0
det( A)  0
Local minima
12.02.02
Objective function Q (a )
A A  I
Parameters a
a 7aa6 a5ˆ 4 a 3
a2
a1
a0
18
4. Multicollinearity
12.02.02
19
Multicollinearity: View
Multicollinearity is degradation of matrix A
Objective function Q(a)
Spread of eigenvalues
æ l max
N( A)  log 10 ç
ç l min
è
ö
÷
÷
ø
8
7.2
6.4
a1
5.6
5.6
4.8
4.8
44
3.2
3.2
2.4
1.6
0.8
00
1.2
1.2
a2
2.4
3.6
4.8
4.8
6
7.2
7.2
is a measure of
degradation
N(A) = 2
1
7
6
5
4
12.02.02
20
Multicollinearity: Source
“Hard” multicollinearity
“Soft” multicollinearity
(
)
y  a1 1 - e -a2 x  a1a2 x at a2 x << 1
y  a1a2 x
y
aa22xx=0.05
=1.0
=0.5
=0.1
0.05
0.1
0.8
0.4
00
00
12.02.02
55
10
10
x
21
Data & Model Preprocessing
((a + b) + c) + d  a + (b + (c + d)) as
1+10 –20 = 1
Representation of a number in computer with 64 bits
1
0
0
1
…
0
1
1
Target is to make Hesse matrix A regular and decrease N(A)
M
e
a
n
s
12.02.02
Data Scaling
Data Centering
Model Adjusting
X  mX
X  X – X0
a   (a) x   (x)
y   (y)
22
Example: The Arrhenius Law
Standard form
Adjusted form
æ E ö
k exp ç ÷
è RT ø
exp (a1 - a2 X )
Scaling & centering
1000
X 
- X0
T
1 n 1000
X0  å
n i 1 Ti
Adjusting
a1  ln (k ) - a2 X 0
a2 
k  10+11
E  10+4
N(A) = 20
12.02.02
a1  1
E
1000 R
a2  10
N(A) = 2
23
Derivative Calculation and Precision
N(A)
A-1
y=f (a,x)
0=f (y,a,x)
dy/dx=f (y,a,x)
6
10
8
6+2=8
10+2=12
8+2=10
8+0=8
12+0=12
10+0=10
8+2=10
10+2=12
12+2=14
14+2=16
10+2=12
12+2=14
1) Numerical calculation of difference derivatives
C
2) Auto calculation of analytical derivatives
f=exp(-a*t)
12.02.02

df/da=-t*exp(-a*t)
24
5. Prediction
12.02.02
25
Reliable Prediction
Estimate of response
Confidence limits
Linearization
yˆ  f ( x, aˆ )
Prob{l ( x, P) < f ( x, a) < r ( x, P) } ³ P
r ( x , P)  f ( x , aˆ )  g ( P) v t Cv
Forecast should
include uncertainties!
12.02.02
26
Nonlinearity and Simulation
*
a * ~ N (aˆ, C )  a1* ,K, a*M  f 1* ,K, f M
 r ( P,x)
Non-linear models call
for special methods of
reliable prediction!
12.02.02
27
Prediction: Example
Model of
rubber aging
Y  1 - e -( kt) ,
a
Accelerated aging tests
T=383K
Y
1.00
T=368K
1.00
Simulation
Mean
0.80
0.80
0.60
0.60
0.40
0.40
0.20
0.20
0.00
0.00
12.02.02
48
T=293K
Linearization
T=353K
24
E
RT
Upper confidence limits
Y
0
k e
k0 -
72
time, hr
96
120
0
60
120 180 240
time, day
300
360
28
6. Testing
12.02.02
29
Hypotheses Testing
Test statistics x is compared with critical value t (a)
From
experiment
Test don’t prove a model!
It just shows that
the hypothesis is
accepted or rejected!
12.02.02
From
theory
30
Lack-of-Fit and Variances Tests
These hypotheses are based on variances
and they can’t be tested without replicas!
100
Replica 1
6
Variances
by
replicas
Replica 2
50
Lack-of-Fit
is a wily test!
4
Variance
Response
75
2
25
0
0
0.5
1.5
2.5
3.5
4.5
5.5
Predictor
12.02.02
31
Outlier and Series Tests
These hypotheses are based on residuals
and they can be tested without replicas
Response
Positive
residual
Acceptable
deviation
1.2
Series test is
very sensitive!
5
Series of signs
Positive residuals 6
Negative residuals 11
1
0.8
Negative
residual
0.6
Outlier
0.4
0.2
0
5
10
15
Predictor
12.02.02
32
7. Bayesian Estimation
12.02.02
33
Bayesian Estimation
How to eat away
an elephant?
Slice by slice!
12.02.02
34
Posterior and Prior Information. Type I
Posterior Information
Prior Information
Parameter estimates aˆ
Prior parameter values b
Matrix F
Recalculated matrix H
Error variance s2
Prior variance value
NDF
Prior NDF
The same error sin
N
each
portion ofN data!
f
0
2
0
Objective Function
Q ( a )  S ( a )  B (a )
B(a )  s02 (N 0  R(a ) ) R(a )  (a - b) t H (a - b)
12.02.02
35
Posterior and Prior Information. Type II
Posterior Information
Prior Information
Parameter estimates aˆ
Prior parameter values b
Matrix F
Recalculated matrix H
Different errors in
Q (a )  S (a ) B (a )
each
portion
of
data!
æ R (a ) ö
B(a )  exp ç
R (a )  (a - b ) H (a - b )
÷
Objective Function
t
è N ø
12.02.02
36
8. Conclusions
Mysterious Nature
LR Model
NLR Model
Thank
you!
12.02.02
37