Слайд 1 - cosmos.ru

Download Report

Transcript Слайд 1 - cosmos.ru

Laplace-Ganymede lander mission
LANDERS FOR GALILEAN
SATELLITES
ZIGZAG HISTORY OF THE
ENDEAVOUR
LEV ZELENYI
and
OLEG KORABLEV
05 March , 2013
Missions to the Jupiter System I
• VOYAGER !!!!
• Galileo (1989-2003)
• JUNO polar orbiter launched Aug.2011
• Since 1996: ~20 cancelled proposals:
– Europa Orbiter (NASA 2002)
– Jupiter Icy Moons Orbiter (JIMO, NASA 2005)
– Jovian Europa Orbiter (JEO, ESA 2007)
Around 2007:
• NASA: Jupiter Europa orbiter mission
(Flagship) + - SURFACE ELEMENT ??
• ESA: Laplace (L-Class)
Missions to the Jupiter System II
EJSM Europa Jupiter System Mission : 2008
– NASA: Jupiter Europa Orbiter
(JEO), planned to study Europa
and Io.
– ESA: Jupiter Ganymede Orbiter
(JGO), planned to study
Ganymede and Callisto
– JAXA: Jupiter Magnetospheric
Orbiter (JMO), planned to study
Jupiter's magnetosphere.
– Roscosmos: Europa Lander,
planned to land on Europa's
surface for in situ studies.
EUROPA LANDER
RUSSIAN SPACE AGENCY
RUSSIAN ACADEMY OF SCIENCES
ICE COVER
“Without a surface element,
EJSM is just preparatory
for a very future mission
with goals really related
to ASTROBIOLOGY”
Olga Prieto-Ballesteros
Космос для человечества
WHY LANDER ??
• SOVIET EXPERIENCE IN SOFT LANDINGS
(MOSTLY LAVOCHKIN ASSOCIATION ACHIEVMENTS)
1. MOON
first automatic return of lunar samples--3
 first lunar rover -2
2. MARS
-No successful landings
3. VENUS !
FIRST AND LAST LANDINGS BY SOVIET VENERA”s
4. Preparations for PHOBOS Landing
Luna 24
Luna 16, 20, 24
Venera 9-14 results
To look through the clouds, to descend, and to land
Venera 9-10 measured the solar flux at the surface – the basic
figure to calculate greenhouse. Nightglow spectra. 1975
•
Venera 11-12 measured atmospheric spectra and fluxes
down to the surface. Mass spectrometer showed an anomaly =
in 36Ar/40Ar ratio, and measured the isotopes of neon.
Gas-chromatographer measured CO and other minor constituents
in the low atmosphere. Detection of electric activity;
measurements of physical and chemical properties of clouds.
Спектры ИОАВ
Venus 11 dayside spectra
Colour panorama (Venera 13-14)
Laplace-Europa Lander mission (I):
Development:
2008: Preliminary assessment
2008: Initial industrial study 2008
2009: Europa Lander workshop 2009
2010: radiation load/scenario/landing
site assessment; lander payload
definition
2011: further scenario development;
orbiter payload definition; payload
accommodation
Roscosmos
IKI
Mission architecture:
• Europa lander, full mass 1210 kg,
target 50 kg of mass for science
• Telecom and science orbiter, 50 kg
science payload
• Multiple fly-bys of Ganimede, Callisto
and Europa;
• Final circular orbit around Europa
with a height of 100 km;
• Soft landing, target surface mission
duration 60 days. Surface analysis by
drilling (30 cm depth) possibly
melting probe (<5 kg). Orbiter
supports telecommunication.
Optional TM directly to Earth via VLBI
• Target total radiation dose <100kRad
behind 5 g/cm2 Al (300 kRad tolerant
components)
TSNIIMASH
Lavochkin Assoc
Laplace-Europa Lander mission (II):
Resources:
• 50 kg on the lander, including sample
handling and (partially) radiation
shield
• 3.2 kbit/s via HGA to 70-m dishes
• Lander data relay via orbiter
• 50 kg on the orbiter, including
(partially) radiation shield
Science Goals:
• The main appeal of the present mission is
search for life on or its signatures on
Europa
Proof-of-the-concept payloads
Lander:
• 12 instruments  20 kg
• 4-5 kg melting probe
• Drill for 30-cm depth
Orbiter:
• 6 instruments, incl. radioscience
•
Roscosmos
IKI
–
–
•
Establishing geophysical and chemical
context
–
•
Sample acquisition, concentration
Subsurface access
Biology-driven experiments should provide
valuable information regardless of the
biology results
Lander is to provide ground truth for
remote measurements and enhance the
detection limits
Orbiter: versatile remote observations;
landing site characterization; Jupiter
science
TSNIIMASH
Lavochkin Assoc
From Europa Lander to Ganymede Lander
• An absolute need for the Orbiter for retranslation
• No reconnaissance information on Europa because of NASA
Europa Orbiter cancellation
• Impossibility for the planned Russian 400-kg Europa Orbiter to
fulfill both the reconnaissance and telecom functions
• Moreover, 400-kg Europa Orbiter is incompatible with the
telecom function only because of high radiation burden in
orbit around Europa
 Ganymede Lander in coordination with ESA JUICE or a JOINT
project with ESA
+

+
Ganymede Lander: play safe !
• Detailed reconnaissance from JUICE for choosing the
Ganymede Lander landing site
• Landing using ESA Visual Navigation system
• Telecommunication via JUICE, if logistics permit
• Dedicated small (?) Ganymede orbiter for telecommunication
and limited science
+

+
+
+
Science objectives
• Characterize Ganymede as planetary object
including its habitability
• Study the Jupiter system as an archetype for
gas giants
1. Why is Ganymede an habitable world
Научные задачи: Обитаемость Солнечной системы EJSM-Laplace
Why are Ganymede
and Europa
habitable
worlds ?и Ганимеде?
Возможна
ли жизнь
на Европе
Необходимые
составляющие
The habitable zone is not restricted to the Earth’s
orbit…
Surface/Deep habitats
Deep habitats
•
•
•
•
Жидкая вода
Элементы
Энергия
Время
Deep habitats
Science objectives
• From direct search for life on Europa to
determining the habitability of Ganymede
– Establishing geophysical and chemical context for
habitability
– Lander is to provide the ground truth for remote
measurements and enhance the detection limits
• Orbiter:
– Complement JUICE (2-points observations, etc)
– High-resolution measurements of target areas
– Others…
Europa Lander model payload
Instrument
Conditions
Composition
Prototype
Mass
(estimated)

OPTIMISM/Mars 96
495g +electronics
Habitability
Seismometer

Magnetometer



MMO Bepi Colombo
770g
TV camera set



CIVA/Rosetta; Phobos 11
1200g
Optical microscope



Beagle-2; Phobos 11
300g
(2000g)



No direct prototype;
technique well
established



CIVA/Rosetta
MicrOmega/ExoMars
(1000g)



GAP/Phobos 11;
COSAC/Rosetta
(5000g)
Wet chemistry set (option 1)


Urey/ExoMars1
2000g
Immuno-arrays (option 2)


SOLID/ExoMars1
(1000g)
IR spectroscopy
IR close-up spectrometer
GCMS
Raman spectroscopy



RAMAN-LIBS/ExoMars1
1100g2
Laser-ablation MS



LASMA/Phobos 11
1000g
XRS (TBD)



No prototype
(2000g)
Various sensors



MUPUS/Rosetta
2350g
Radiation dose


RADOM/Chandrayaan-1
100g
20315g
Largely applicable to Ganymede?
Ganymede surface science
• A set of instruments on the Lander
– Assume max mass of instruments and aux systems
of 50 km to include:
•
•
•
•
•
instruments;
sampling device(s);
Deployment
Data handling
Radiation protection for instruments out of common
compartment
• Penetrator(s)
Landing scheme +IMPACTOR
2007 presentation
Penetrator(s)?
• To be released from the orbit
• Mass 5-15 kg
• Payload <2 kg
Orbiter payload
• Reconnaissance
–
–
–
–
Full mapping from JUICE
Landing sites/target areas
WAC+HRC
What resolution required ? Meters ? (orbit not yet defined…) compare
to JUICE final orbit (200 km polar), 5 µrad IFOV
• Magnetometer
– Boom of several meters!
• Radioscience?
• Some plasma instruments
• Some optical instruments/ others JUICE losers
• More info after the JUCIE selection
 To define requirements on the Orbiter
THANKS FOR ATTENTION)
Европа
Ио
Ганимед
Каллисто
Космос для человечества
THANKS FOR ATTENTION
•
Lander instruments/systems
• Set of context instruments
– Panoramic camera (stereo, filters or color)
– Various sensors (temperature, conductivity, radiation, etc)
• Geophysical package
– Seismometer
– Magnetometer
• Geochemistry
– Contact (GCMS, Laser Ablation/Raman, XRD/XRS, …)
– Sampling system: robotic arm
– Remote (IR spectroscopy)
Sampling/mechanisms
• Robotic arm with sampling device
–
–
–
–
–
–
Heritage: Phobos-Grunt, Luna-Resource
Mass: 3-5 kg (including commanding?)
Chomic-type perforator (mass-?)
Scoop/sampling cylinder (?)
Dedicated context and close-up cameras (mass ~ 500g)
APX-type instrument(s) (mass ~500 g)
• Common sample preparation system for GCMS, laser ablation, XRD, etc ???
• Mast for panoramic camera/IR spectrometer
– Stereo camera (type Phobos, Space-X)
– High-resolution camera (Type ExoMars)
– IR spectrometer (type LIS, or ISEM
• Magnetometer boom
• No drilling on the lander
Geophysical package
• Seismometer
–
–
–
–
–
–
No need for a state-of-the-art Mars-type device
Two-axis
Lognonnee-type or Manukin-type?
Mass: <2 kg (?)
Deployment required or placement on the foot suffice?
To include tiltmeter?
• Magnetometer
– Keep mass within 1 kg
– Deployment necessary!
Ganymede Lander model payload
Instrument
Conditions
Composition
Prototype
Mass
(estimated)

OPTIMISM/Mars 96
Luna-Resurce
~2000 g +shield
MMO Bepi Colombo
770g +boom+ shield
ExoMars
1200g + mast +
shield
Habitability
Seismometer

Magnetometer









TV camera set
IR spectroscopy
LIS Luna-Resource, ISEM
ExoMars
Robotic arm
1400 +shield
3500



Beagle-2; CUPI/ExoMars
500g + shield



GAP/Phobos 11;
COSAC/Rosetta
6000g



LASMA
RAMAN-LIBS ExoMars
3000g
XRD


ExoMars
1500g
XRF


APX/ MER
500g+shield


Rosetta, Luna Resource,
2500g

RADOM/Chandrayaan-1
100g
Optical microscope
GCMS
Laser-ablation MS +Raman
Spectro
Various sensors

Radiation dose

~25 000 g
Orbiter payload
• Reconnaissance
–
–
–
–
Full mapping from JUICE
Landing sites/target areas
WAC+HRC
What resolution required ? Meters ? (orbit not yet defined…) compare
to JUICE final orbit (200 km polar), 5 µrad IFOV
• Magnetometer
– Boom of several meters!
• Radioscience?
• Some plasma instruments
• Some optical instruments/ others JUICE losers
• More info after the JUCIE selection
 To define requirements on the Orbiter