Elementary Particle Physics

Download Report

Transcript Elementary Particle Physics

Lecture 7
●
Parity
●
Charge conjugation
●
G-parity
●
CP
FK7003
1
Already done a lot to understand the basic particles of nature
Lepton
universality
Strong,
weak,em ?
Isospin
singlets
175000
Isospin
multiplets
small
small
small
Neutrino
oscillations/
mass
Quark
composition
Decay
modes
Symmetry and QM demands much of
what is observed!
FK7003
2
Transforming under parity
 Convert the "handedness" of a particle.
Eg right-handed particle  left-handed particle.
 Wu's experiment which showed parity violation
in weak processes since left-handed antineutrinos
don't exist!
FK7003
3
Ways of thinking about parity
Transformation: r  x, y, z   r   x,  y,  z 
Further complementary ways to think about parity invariance.
(a) Parity transformation is equivalent to making a reflection
and then a rotation. Since nature is invariant to a rotation (angular
momentum conservation), is the mirror image of a process/particle equally
possible.
+
(b)
v
Not possible.
ms=-1/2
ms=1/2
Possible.


real
”virtual”
 ˆ
 H ; Hˆ  x, y, z   Hˆ   x,  y,  z  ;   x, y, z , t      x,  y,  z , t 
t
Is   x, y, z , t      x,  y,  z , t 
2
2
? Is the Hamiltonian invariant ?
Look for a conserved quantity (this lecture).
FK7003
4
Intrinsic Parity
Consider closed system of particles.
Parity transformation is: ri  ri '  ri ; ri  position vector of a particle at the origin.
Consider single particle (easily generalised to many particles)
Parity operator: Pˆ   r , t   Pa   r , t  (7.01)    r , t   "mirror image" of particle 
Pa  phase factor, a  particle, eg e  , u etc.
i p  r  Et 
i  p  r  Et 
Eigen function of momentum:   r , t   e 
 Pˆ   r , t   P e 
(7.02)
P
P
For a particle at rest p  0,  P  r , t   e  iEt
a
ˆ  iEt  P e  iEt
 Pˆ  P  r , t   Pe
a
(7.03)
Pˆ 2  P  r , t   Pa2  P  r , t   Pa  1 (7.04)
 eigen state of Pˆ with eigen value Pa .
A particle has an intrinsic parity Pa .
This is an intrinsic property of a particle, like baryon number or lepton number.
Showed this for particles which can be at rest. General - photons can also have an
intrinsic parity (to come)
FK7003
5
Intrinsic Parity
Let's give our particle a some definite orbital angular momentum:  nlm is a parity eigenstate.
 nlm  r   Rnl  r  Yl m  ,   (7.05)
Y00  ,   
r  r
1
3
3
; Y10  ,   
cos  ; Y11  ,    sin  ei (7.06)
4
8
4
 r  r ;      ;      (7.07)
3
3
cos     
cos
4
4
Y00    ,     
1
4
Y11    ,      -
3
3
3
i  
i
sin     e    ei
sin   ei 
sin   e  
8
8
8
; Y10    ,     
 Yl m  ,     1 Yl m  ,   (7.08)
l
l
 Pˆ  nlm  r   Pa  nlm  r   Pa  1  r   nlm  r 
 Parity=Pa  1
l
(7.09).
Generalise to two particles c, d rotating in centre-of-mass frame:
Pc Pd  1 , l =relative orbital angular momentum. (7.10)
l
For a Hamiltonian invariant under parity:  Pˆ , Hˆ   0 (7.11)
 We have a conserved quantity with which we can study parity violation (weak)/invariance (strong and em).
FK7003
6
Calculating parity
Parity is a multiplicative quantum number. It is, like spin, an intrinsic property of a particle.
i.e. System of particles A, B with orbital angular momentum l :
PABC  PA PB  1 (7.12)
l
1
fermions: Pfermion Pantifermion  1 (7.13)
2
 1, Pantifermion  1 (7.14)
From Dirac equation: spinConvention: Pfermion
Ground state mesons (no orbital angular momentum):
 Pmes  -1 (7.15)
Check and measure with data.
Particle
Pseudoscalar mesons (s=0)
,K,h,D,B
Vector mesons (s=1)
K*,w,
Parity
(P)
-1
-1
FK7003
7
Parity of the photon
Decay of atomic energy level with single photon emission.
Selection rules (dipole): l  1, S  0 (7.16)
Eg electron in excited H -atom.
Recall (7.09):
l=+-1
Pˆ  nlm  r   Pa  1  nlm  r 
l
Parity before photon emission=Pa  1
Parity after photon emission=Pa  1
 Pa  1  Pa  1
l
l 1
l 1

l
Atomic energy levels
P
 P   1  1 (7.17)
1
FK7003
8
Parity of the electron
1
fermions: Pfermion Pantifermion  1 (7.13)
2
e   e  form positronium (short-lived state - forthcoming lecture)
Parapositronium L  0, S  0
From Dirac equation: For spin
e  e    
Parity conservation: LHS: Pe Pe
: RHS:  P   1 
2
 Pe Pe   1
l
l
positronium
(7.18)
Measurements of l confirm (7.13).
Pair production of e  , e  makes it impossible to ever determine e  or e  absolutely.
Have to define Pe  1, Pe  1
FK7003
9
Intrinsic parity
Particle
Parity (P)
Electron, muon, tau
+1
-1
+1
-1
-1
-1
-1
+1
Positron,antimuon,antitau
Quark
Antiquark
Photon
Pseudoscalar mesons (s=0,l=0) ,K,h,D,B..
Vector mesons (s=1,l=0)
K*,w,
Ground state baryons (l=0) p,n,S..
FK7003
10
Question
●
Before Wu’s experiment the t and  particles
were observed with the same spin, mass,
charge. They were thought to be different
particles because they decayed into states with
different parities
 P  1
 P  ?
t   


  

●

0
0
0
Calculate the parity of the pion system from the
second decay. Assume no orbital angular
momentum in the final pion system.
●
State which particle t and  is.
●
Which of the decays violates parity ?
FK7003
11
Charge conjugation: C
Charge conjugation Cˆ converts each particle to its antiparticle,  to  .
  particle which is its own antiparticle, eg  0 ,  , 0 ..
Cˆ |   C |  
ˆ ˆ |  |  
 CC
 C  1 (7.19)
a  particle which is not its own antiparticle, eg   , K  , 
ˆ ˆ | a  C C | a   C C  1 (7.20)
Cˆ | a  Ca | a  ; Cˆ | a  Ca | a   CC
a a
a a
C =C -parity is a useful quantum number for particles which are their own antiparticles
and are eigenstates of Cˆ , eg  0 ,  , . Can also be extended into G-parity (later).
Ca ,Ca are arbitary phase factors with no physical significance.
Cˆ changes the sign of all "internal" quantum numbers:
charge, lepton number, baryon number, strangeness, charm,bottomness, I 3 .
Mass, energy, momentum, spin unchanged.
Cˆ , Hˆ   0 (7.21) when charge conjugation symmetry is respected: em and


strong forces.
FK7003
12
Question
Show, with the example of a neutrino, that
charge conjugation is not a symmetry of the
weak force.
FK7003
13
C-parity (C)
• Same game as for parity! We’ve found a symmetry
of the em and strong forces, but not of the weak.
• Find a quantity conserved in strong and em
processes.
• Most particles are not eigenstates of Cˆ
• Particles which are eigenstates are their own
particles, eg 0,,0
• Can also construct eigenstates using particle



0



,





antiparticle pairs, eg
• Particles or multiparticle states have eigen value
known as an intrinsic C-parity quantum number, eg 
has C1
• C is a multiplicative quantum number like parity.
FK7003
14
Calculating C
Eigenvalue of Cˆ for pion-pion pair (   )
given by Cˆ |    ; l  (1)l |    ; l  (7.22)
1
Eigenvalue of Cˆ for spin- fermion-antifermion pair (ff )
2
given by Cˆ | ff ; l , s  (1)l  s | ff ; l , s  (7.23)
l  orbital angular momentum, s  total spin angular momentum
for combined ff state.
C for the lowest mass hadron states (l=0 )
 0  uu  dd  ff (spin  0)  C  1
 0  uu  dd  ff
(spin  1)  C  1
Unless otherwise stated, we will be dealing in this lecture
with systems of particles for which l=0.
FK7003
15
Question
Using the decay      calculate C 0 .
0
FK7003
16
C and P
Particle
P
C
Pseudoscalar
mesons (s=0)
,K,h,D,B
-1
+1
Vector mesons
-1
-1
-1
+1
-1
N/A
Charged
Leptons
1
N/A
Charged antileptons
-1
N/A
C value only applicable
for particles which are
their own anti-particles
(s=1) K*,w,
Photon
Ground state
baryons
FK7003
17
Formalism
A particle is characterised by the form JPC, eg 1-J=total angular momentum, P=parity(+ = +1,- = -1),
C=charge conjugation number (+ = +1, - = -1)
In certain situations C is not a useful quantum
number – most particles are not eigenstates of C:
JP is used.
Eg   : 0 ,  0 : 0 , K  : 0 ,  :1.
P=1
C=1
”even” parity, P=-1
”even” C-parity, C=-1
FK7003
”odd” parity
”odd” C-parity
18
G-parity
The strong force is invariant under isospin and respects charge conjugation.
Can we combine these symmetries to get another useful symmetry ?
Combine Cˆ  charge conjugation with Rˆ  rotation around " y " (or 2) axis in isospin space.
For pions Rˆ  0    0 ; Rˆ    
(7.24)
Same algebra of angular momentum as for isospin.



3
3

3
0
0
0
Spherical harmonic Y1  ,   
cos   , Y1    ,     
cos     
cos  Y1  ,   (7.25)


4
4
4


3
3
3
i   
i
1
 i
1
Y11  ,   

sin   e , Y1    ,     
sin     e

sin   e =Y1  ,   (7.26)


8
8
8


3
3
3
 i   
1
 i
1
i
1
Y1  ,   

sin   e , Y1    ,     
sin     e

sin   e =Y1  ,   (7.27)


8
8
8
For neutral pion Cˆ  0   0 (7.28)
ˆ ˆ (7.29)  Gˆ  0  G  0    0
Define Gˆ  CR
 G  1. (7.30)
Eigenvalue of Gˆ  G-parity or G - conserved in strong interactions.
Choose Cˆ     (7.31). Obs! Results don't depend on our choice of arbitary phase
Choose that all isomultiplet members have same G.  Gˆ      
(7.32)
Generally for an isomultiplet, eg   ,   ,  0 : G  (-1) I C (7.33)
C  C -parity for neutral member of isomultiplet, I  isospin.
FK7003
19
Particles for which G-parity is relevant
G  G  parity, a useful quantum number.
Which particles are eigenstates of Gˆ ?
Particles carrying no flavour quantum numbers (S , C , B ) or baryon
number.
Gˆ    G   , Gˆ   G 
Gˆ K   a K 0
Gˆ  0  b  0
Some eigenvalues (not exclusive list):
w , ,, '... C  1 ; I  0
From (7.30) G  (-1)0 (1)  1
 ,   ,   ... C  1 ; I  1 
G  (-1)1 (1)  1
(7.34)
Since G is a multiplicative conserved quantity.
 states of N -pions have G   1 (7.35)
N
 explains why some particles decay strongly to 2 and others to 3 .
FK7003
20
Some decays explained with G-parity
Eg
  2 LHS: G  1,
  3  LHS: G  1,
RHS: G   1  1 ok!!
2
RHS: G   1  1 forbidden!
3
w  3  LHS : G  1, RHS: G   1  1 ok!!
3
w  2  LHS : G  1, RHS: G   1  1 forbidden!!
2
,
"Explains" decays of many other particles:  ',,h,h '.....
FK7003
21
Conserved quantities/symmetries
Quantity
Strong
Weak
Electromagnetic
Energy



Linear momentum



Angular momentum



Baryon number



Lepton number



Isospin

-
-
Flavour (S,C,B)

-

Charges (em, strong
and weak forces)



Parity (P)

-

C-parity (C)

-

G-parity (G)

-
-
CP

-

T
CPT
Coming up

-




FK7003
22
CP
• C and P are not separately respected in
weak decays
• What about CP ?
      
(  left - handed)

(  left - handed!! )
X
(  right - handed)

Apply C
      
Now apply P
      
Combined CP transformed decay ok!
• Original and CP-transformed decays occur
with same rate. CP symmetry is respected
in many weak processes.
FK7003
23
FK7003
24
Neutral kaons
We define a neutral K0 by its quark content (sd), mass (498
MeV), spin (0), isospin (I=1/2,I3=-1/2) - a normal particle !
Consider production of K 0 :
eg . p  n  K 0  K   p  p
Strong decays forbidden
(no flavour violation!)
It decays weakly with time:
Non-exponential decay time!
K 0 seems to comprise two other
particles (K1 and K 2 ) with definite lifetimes t 1 ,t 2
t 1  1010 s, t 2  5 108 s
FK7003
25
Strategy
Test the hypothesis that CP is a good symmetry of the weak
force.
Try to form CP eigenstates from K0 and K0 and check they decay
in CP-conserving ways (recall   and C conservation.)
Pˆ | K 0   | K 0 
Cˆ | K 0   | K 0 
Pˆ | K 0   | K 0  (7.36)
Cˆ | K 0   | K 0  (7.37)
ˆ ˆ | K 0  | K 0 
 CP
ˆ ˆ | K 0  | K 0  (7.38)
CP
ˆ ˆ:
Normalised eigenstates of CP
1
1
0
0
0
0
0
| K 
|
K


|
K

|
K

|
K


|
K
  (7.39)



2
2
2
ˆ ˆ | K 0 | K 0 
ˆ ˆ | K 0   | K 0  (7.40)
CP
CP
1
1
2
2
0
1
FK7003
26
1
| K 0   | K 0 

2
1
| K 0 
(| K10   | K 20 )
2
| K10 
1
| K 0   | K 0   (7.39)

2
1
| K 0 
(| K10   | K 20 ) (7.41)
2
| K 20 
Hypothesise that the CP eigenstates are the two neutral states
observed in the K 0 decay.
If CP is conserved then K10 decays into CP  1 states    ,  0 0  and
K 20 decays into CP  1 states
 K10  
and
   0 ,  0 0 0  .
K 20   .
Two neutral kaons states had been observed decaying
weakly: t 1  1010 s, t 2  5 108 s
The 2 decay will happen faster because of greater
phase space
- associate K10 ,t 1:CP  1 and K 20 ,t 2 : CP  1
FK7003
(7.42)
27
Neutral Kaons and Strangeness Oscillations
1
(| K 0   | K 0 )
2
1
0
| K 
(| K10   | K 20 )
2
1
(| K 0   | K 0 ) (7.39)
2
1
0
| K 
(| K10   | K 20 ) (7.41)
2
| K10 
| K 20 
Consider in the kaon rest frame and allow a decay
t
t
i
i



i
(
m

)
t

i
(
m

)t



1
2
1
1
 im1t
2t1
 im2
2t1
2t1
2t 2
o
0
0
0
K (t ) 
K1  e e
K2  
K1  e
K 20
e e
e

2 
2 


 (7.43)


Consider a particle produced at t=0 as a K0 . Amplitude that it is still a K0
at a later time t:
i
i

i
(
m

)
t

i
(
m

)t

1
2
1
2t1
2t 2
o
o
0
0
0
K K (t ) 
K1  K 2 )  e
K1  e
K 20

2



1
1

i
(
m

)
t

i
(
m

)t 

1
2
1
2t1
2t 2
o
o
K K (t )   e
e
 (7.45)


2
FK7003 

 (7.44)


28
Probability that it is still a K0 at a later time t:
K o K o (t )
2
K o K o (t )
 i ( m2 
) t   i ( m1 
)t
 i ( m2 
)t 
1   i ( m1  2t1 )t
2t 2
2t1
2t 2
 e
e
e
 e



4 


i
2
K o K o (t )
Similarly:
K o K o (t )
2
2
i
i
t
t
i
i
i
i


i
(
m

m


)
t

i
(
m

m


)t 

2
1
1
2
1 t1
t2
2t1 2t 2
2t1 2t 2
 e  e  e
e



4

2
K o K o (t )
i
t
t
t 1 1

 (  )

1  t1
t2
2 t1 t 2
i ( m2  m1 ) t
i ( m1  m2 ) t
 e  e  e
e
e





4

t
t
t 1 1

 (  )

1   t1
t2
2 t1 t 2
  e  e  2e
cos  (m2  m1)t   (7.46)


4

t
t
t 1 1

 (  )

1   t1
t2
2 t1 t 2
  e  e  2e
cos  (m2  m1)t   (7.47)


4

Strangeness oscillation!!
Beam of particles, initially pure K 0 .
After time t (in particles rest frame)
study intensity of the beam and
composition of K 0 , K 0 .
Eg compare rates of K 0  p    uds    
(not possible as strong reaction for K 0 , why??)
and K 0  p  K    0 , K 0  p  K    0 .
FK7003
29
Kaon oscillations
Intensity
(Niebergall et al., 1974)
K
Oscillations observed.
0
From many experiment: m2  m1  3.5  106 eV (7.44)
(Obs!
m2  m1
mK
1014 -tiny, m2  m1 from other experiments. )
0.25
K
0
2
0
4
6
8
Time in K0 rest frame (x10-10 s)
50% of the beam | K10  (short lived)
has died away leaving the
1
| K 20 
| K 0   | K 0   with apparently

2
equal contributions of | K 0 ,| K 0  .
The | K 20  decays very slowly (t  5 108 ).
FK7003
30
Question
To measure the oscillations of a beam of neutral
kaons of energy 10 GeV how large should an
experiment be ?
(Niebergall et al., 1974)
Intensity
●
Oscillation pattern visible over time
K
0
scale tosc
109 s in kaon rest frame.
E 10
Speed v  c ;  
 20 .
m 0.5
Distance travelled in the lab
 ctosc  20  3  108 10 9  6m.
Pretty small compared with
neutrino oscillations!
K
0
2
0
4
6
8
Time in K0 rest frame (x10-10 s)
FK7003
31
Some interpretation and comparisons
K 0 oscillation
Neutrino oscillation (2-component approximation)
(1) Particles are produced in a flavour
(1) Particles are produced in a beam in a flavour
eigenstate, eg   .
eigenstate by (s ).
(2) As they pass through space the proportion of flavour
  , t oscillates (    t ).
(2) As they pass through space the proportion of
of flavour s , s oscillates (K 0  K 0 ).
(3) This is a simple quantum mechanical effect.
The   is not a mass eigenstate, rather a mixture
(3) This is a simple quantum mechanical effect.
The K 0 is not a mass eigenstate, rather a mixture
0
1
of two mass eigenstates:  1 , 2 .
0
2
of two mass and CP eigen states K , K .
(4) The beam intensity stays constant since the
(4) The beam intensity drops since the K 0 decays.
neutrinos do not decay (nothing to decay down
to perhaps!).
(5) Oscillations seen over distance scales 1000 km.
(6) The     t transformation can't be
(5) Oscillations seen over distance scales
m.
(6) The K 0  K 0 transformation can be understood by
the Feynman diagram of a weak process in which
strangeness is violated (next lecture).
understood by any Feynman diagram since
lepton number violation "can't" happen at a
vertex.
K0
K0

|S|=2
Strangeness violated
t
L  L t  1
Lepton number violated!
FK7003
32
Summary
●
Discrete symmetries





Parity (P)
Charge conjugation (C-parity)
G-parity
Fundamental symmetries of nature constrain the
behaviour of particles
CP
●
●
●
Neutral kaons
Strangeness oscillations
Next lecture – CP violation
FK7003
33