Change of nucleon primodial distribution inside medium

Download Report

Transcript Change of nucleon primodial distribution inside medium

The Nucleon Structure and the EOS of Nuclear Matter

Jacek Rozynek INS Warsaw

Nuclear Physics Workshop KAZIMIERZ DOLNY 2006

Summary

• EMC effect • Relativistic Mean Field Problems • Hadron with quark primodial distributions • Pion contributions • Nuclear Bjorken Limit - M N (x) • Higher densities & EOS • Conclusions

EMC effect

Historically ratio R(x) = F

2 A

(x)/ F

2 N

(x)

Pion excess

x Three approaches to its description:

Three approaches to EMC effect

in term of nucleon degrees of freedom through the nuclear spectral function. (nonrelativistic off shell effects) G.A.Miller&J. Smith, O. Benhar, I. Sick, Pandaripande,E Oset

 in terms of quark meson coupling model

modification of quark propagation by direct coupling of quarks to nuclear envirovment A.Thomas+Adelaide/Japan group, Mineo, Bentz, Ishii, Thomas, Yazaki (2004)

by the direct change of the partonic primodial distribution.

S.Kinm, R.Close

Sea quarks from pion cloud.

G.Wilk+J.R.,

D I S

Q 2 , n

j e p

r(emnant)

Hit quark has momentum j

+

= x p

+

Experimentaly x =

Q 2 / 2M

n and is iterpreted as fraction of longitudinal nucleon momentum carried by parton(quark) for n 2 > Q 2 -> oo

On light cone Bjorken x is defined as x = j

+

/p

+

where p

+

=p

0

+ p

z

Deep inelastic scattering

d

W

 n  

l

 n

W

x

  n

(

p

W

 n

W

 n  

q

-

r

)

p J

( 0 )

X X J

n

( 0 )

d

4

e iq

 -

(

g

 n -

p q

q v J

(

)

J

n

( 0 )

p

/

q

2 )

W

1 (

q

2 ,

n

)

1 /

M

2

p

(

p

(

n -

(

Mv

/

q

2 )

q

)(

p

n

/

M

)

n

lim



W

2 (

q

2 ,

n

)

 -

(

M

n

/

q

2 )

q

n

)

W

2 (

q

2 ,

n

)

F

2 (

x T

)

Bjorken Scaling q

(

n

, 0 , 0 ,

-

v

2

Q

2 ),

Q

2

 -

q

2

 

q

(

n

, 0 , 0 ,

n -

Mx

)

x T

Q

2 / 2

M

n 

fixed

Light cone coordinates

W

 n  

d

4

e iq

q

(

n

, 0 , 0 ,

-

p J

(

)

J

n

( 0 )

v

2

Q

2 ),

p Q

2

 -

q

2

Q

2

 

with x q

(

n

, 0 , 0 ,

n -

Mx

)

fixed

(

Q

2

x

Q

2 /

n

2 ) / 2

M

n 

0

fixed q

 

1 / 2 (

q

0

q

3 ) in Bjorken limit so

q

-

if

 

q

 

but q

  -

q

  -

Mx

/

q

 

then 2

 

0 but |

 -

|

2 /

Mx

|

0 |

1 /

Mx

and |

3 |

1 /

Mx

Relativistic Mean Field Problems

In standard RMF electrons will be scattered on nucleons in average scalar and vector potential: [a

p

+ b( M+U S ) - ( e -U V )]y0 where U S =-g S /m S r S U V =-g V /m V r U S = 300MeV r/ r 0 U V = 300MeV r/r 0

Relativistic Mean Field Problems

In standard RMF electrons will be scattered on nucleons in average scalar and vector potential: Gives the nuclear distribution f(y) of longitudinal nucleon momenta p + =y A M A [a

p

+ b( M+U S ) - ( e -U V )]y0 where U S =-g S /m S r S U V =-g V /m V r r

A

(

y A

)

4

r 

d

4 ( 2

p

) 4

S N

(

p

0 , p )

  

1

p

3

E

(

p

)

      

y

-

(

p

0

 

p

3 )

   U S = -400MeV r/ r 0 S N () - spectral fun.  - nucleon chemical pot.

U V = 300MeV r/r 0

Relativistic Mean Field Problems

connected with Helmholz-van Hove theorem - e(p F )=M e In standard RMF electrons will be scattered on nucleons in average scalar and vector potential: Gives the nuclear distribution f(y) of longitudinal nucleon momenta p + =y A M A [a

p

+ b( M+U S ) - ( e -U V )]y0 where U S =-g S /m S r S U V =-g V /m V r r

A

(

y A

)

4

r 

d

4 ( 2

p

) 4

S N

(

p

0 , p )

  

1

p

3

E

(

p

)

      

y

-

(

p

0

 

p

3 )

   U S = -400MeV r/ r 0 S N () - spectral fun.  - nucleon chemical pot.

U V = 300MeV r/r 0 r

A

(

y A

)

3

v A

2 4

-

(

y A v

3

A

-

1 ) 2 ,

v A

p F

/

E F

*

Strong vector-scalar cancelation

Hadrons with quark primodial distributions based on Heinserberg uncertainty relation •

Gaussian distribution of quark (u and d ) momenta j

Hadrons with quark primodial distributions based on Heinserberg uncertainty relation • •

Gaussian distribution of quark momenta j

Monte Carlo simulations

0 < (j+q) < W 0 < r < W ’

W - invariant mass

• Proton • Width - .18GeV

Hadrons with quark primodial distributions based on Heinserberg uncertainty relation • •

Gaussian distribution of quark momenta j

Monte Carlo simulations

0 < (j+q) < W 0 < r < W '

W - invariant mass

• Proton • Width - .18GeV

• • • Pion width -.18MeV

Hadron with quark primodial distributions Good description - Edin, Ingelman Phys. Let. B432 (1999) • •

Gaussian distribution of quark momenta j

Monte Carlo simulations

0 < (j+q) < W 0 < r < W ’

W - invariant mass

• Proton • Width - .18GeV

• • • • Pion Component width =52MeV N =7.7 %

f N

(

x

;

Q

0 2 )

 

dy y f

(

y

;

Q

0 2 )

f pion

(

x

/

y

;

Q

0 2 ) Sea parton distribution is given by the pionic (fock) component of the nucleon

Change of nucleon primodial distribution inside medium • •

Gaussian distribution of quark momenta j

Monte Carlo simulations

in medium

0 < (j+q) < W m 0 < r < W’ m

W - invariant mass

• pion cloud (mass) renormalization momentum sum rule • • Proton • Width - .18GeV

• Pion width - 52MeV • N =7.7 % IN MEDIUM • Proton • Width - .165GeV • Pion width =52MeV • N =7.7 %

Primodial Distributios and Monte –Carlo Simulations for NM • Calculations for the realistic nuclear distributions The Change of the primodial disribution in medium 

N

   0 .

172

GeV

 0 .

050

GeV N ex

 12 %

N

(

p

) 

N mf

N tail

(

p

)  

A

1 3

N tail

(

p

) 

N C e

b

p for p

>

p C

__________ __________ __________ __

Zabolitsk y Ei Phys

.

Lett

.

76

B N C

 b 0 .

021

Afm

3  1 .

5

fm p C

 2

fm

1

Results

Results

with G. Wilk Phys.Lett.

B473

, (2000), 167

N O S H A D O W I N G

Today - Convolution model for x <0.15

1

x A F

2

A

(

x A

)

A



dy A dx

x

(

x A

-

y A x

)

r

A

(

y A

)

F

2

N

(

x

)

• We will show that in deep inelastic scattering the magnitude of the nuclear Fermi motion is sensitive to residual interaction between partons influencing both Structure Function the Nucleon • Relativistic Mean Field problems • Primodial parton distributions

F 2 N

(x)

• • and nucleon mass in th

NM M B (x)

• Bjorken x scaling in nuclear medium

Nuclear Deep Inelastic limit

1

A

nA i

1

j Ai

M A A

M N

 e  

d

3

p M B

p

2

M B

M N

 e -

e Fermi

Nuclear Deep Inelastic limit

1

A

nA i

1

j Ai

M A A

M N

 e  

d

3

p M B

p

2

M B

M N

 e -

e Fermi

Nuclear Deep Inelastic limit

1

A

nA i

1

j Ai

M A A

M N

 e  

d

3

p M B

p

2

M B

M N

 e -

e Fermi

To much pions

RMF failure & Where the nuclear pions are • • M Birse PLB 299(1985), JR IJMP(2000), G Miller J Smith PR (2001) GE Brown, M Buballa, Li, Wambach , Bertsch, Frankfurt, Strikman

TTwo resolutions scales in deep inelastic scattering

1 1/ Q 2 virtuality of   connected with probe .

(A-P evolution equation -

well known)

1/Mx = z  distance how far can propagate the quark in the medium.

(Final state quark interaction -

not known

) z=9fm

For x=0.05 z=4

fm

Nuclear final state interaction

r N - av. NN distance r C - nucleon radius • if z(x) > r N M(x) = M N if z(x) < r C M(x) = M B

z(x)

Effective nucleon Mass M(x)=M( z(x) , r C ,r N ) J.R. Nucl.Phys.A in print

Nuclear deep inelastic limit revisited x dependent nucleon „rest” mass in NM F 2

N

(

x

)

f

(

x

)

F

2 2

N

(

x

)

( 1

-

f

(

x

))

F

2

N

f(x) - probability that struck quark originated from correlated nucleon

M x

M N

1

-

f

2 (

x

)

V N

> •

Momentum Sum Rule violation 1

A

F

2

A

(

x A

)

dx A

F

2

N

(

x

)

dx

  

1

 C[f

]

V N M

>  

( 1

 e

)

M(x) & in RMF solution the nuclear pions almost disappear Because of Momentum Sum Rule in DIS Nuclear sea is slightly enhanced in nuclear medium - pions have bigger mass according to chiral restoration scenario

BUT also change sea quark contribution to nucleon SF

rather then additional (nuclear) pions appears The pions play role rather on large distances?

Results

Results

Fermi Smearing

Results

Fermi Smearing Constant effective nucleon mass

Results

“no” free paramerers

Fermi Smearing Constant effective nucleon mass x dependent effective nucleon mass with G. Wilk Phys.Rev.

C71

(2005)

Drell Yan Calculations

Good description due to the x dependence of nucleon mass (no nuclear pions in Sum Rules)

Effective Mass in RMF

• W - Nucleon bare mass in the Walecka mean field approach • ZM constructed by changing of covariant derivative in W model. Langrangian describes the motion of baryons with effective mass and the density dependent scalar (vector) coupling constant.

ZM - Zimanyi Moszkowski

Relativistic Mean Field & EOS

quark condensate < qq> m in the medium 0  

q q q q

> > r 

1

r

m

2

eff f

2

  

q q q q

> >

m

1

-

m

2

N f

2

             

(

-

1

m g

2

g

2

 a

2

m

2 ( )

M g

r

2

2

N m

2

M

-

M N N

* )

(

M N

-

M N

* ) 2

              • Delfino, Coelho, Malheiro

< qq > m

0 for a1 (ZM models)

Condensates

Results

“no” free paramerers

Fermi Smearing Constant effective nucleon mass x dependent effective nucleon mass with G. Wilk Phys.Rev.

C71

(2005)

Results

“no” free paramerers

Fermi Smearing Constant effective nucleon mass x dependent effective nucleon mass Soft EOS density- .6 fm -3

EOS in NJL

EMC effect

• pion mass in the medium in chiral symmetry restoration • Nucleon mass in the medium ?

Bernard,Meissner,Zahed PRC (1987)

Estimate of Chiral Stability

f

2

 

2

 

i

2

92

MeV

H.Kleinert, B. Vanden Bossche Phys. Lett. B474 (2000)  

i

2

>

3

2 / 16

2

>

f

2

• For such pionic cutoff Λ fluctuation of pion field pola shift the ground state out of magic circle to <σ 2 >=0 . • In our model : Λ>700MeV for ρ=5ρ 0 (chiral symmetry restoration) • For NJL Chiral Restoration occures when Λ >0.8 Λ q..

where Λ q cutoff for quark momenta • In our model : Λ >0.8 Λ q for ρ=(4-5)ρ 0 .

Conclusions

• Good fit to data for Bjorken x>0.1 by modfying the nucleon mass in the medium (~24 MeV depletion) will correct the EOS for NM.

Although such subtle changes of nucleons mass is difficult to measure inside nuclear medium due to final state interaction this reduction of nucleon mass is compatible with recent observation of similar reduction in Delta invariant mass in the decay spectrum to (N+Pion) T.Matulewicz Eur. Phys. J A9 (2000) • MORE momentum is carried (~ 1% only) by sea quarks ( nuclear pions) due to x dependent effective nucleon mass supported by Drell-Yan nuclear experiments .

• Increase of the „additional nuclear pion mass” 5% means that nuclear density is about 2 times smaller than critical .

k

2

T

> • for higher density SF strongly depend from EOS

x dependent nucleon effective mass

• it is possible to show that in DIS M 2 Bartelski Acta Phys.Pol.B9 (1978) 

k T

2

Medium

/

k T

2

 In the x>0.6 limit (no NN interaction) Nuclear = Nukleon

X-N Wang Phys. Rev.C (2000)

Dependence from initial in p-A collision k T

2

Miller, Smith, Phys. Rev. Lett. 2003

Chiral solitons in nuclei

L

 y _ (

i

  ( 0 )   -

Me i

 5 (

nr

)  (

r

) y  (  )  0 r

s q

(

r

)  y y > 0  r

s v

(

r

)  

d

3

r

' r (

r

-

r

' ) r

s v

(

r

' )

M N

N C E v

E

 r

s N

 4

k F

d

3

k k

2

M N

( r

s v

) 

M N

(

q s v

)  (

r

)  arctan r

q ps

(

r

) r

s q

(

r

)

E A

 4 r

B

(

k F

)

k F

d

( 2  3

k

) 3

k

2 

M N

(

k F

) 2 

g v

2

m v

2 r

B

(

k F

)

Chiral Quark Soliton Model

Petrov- Diakonov

q

(

x

) 

N C M N

n

 y _

n

(| 1   0  3 )  (

E n

p

3 -

xM N

) | y

n

> So far effect to strong

Nuclear Vector Potential in DIS

• Free Nucleon 4 

W

n  

d

4 

e iq

 

P

| [

J

 (  ),

J

n ( 0 )] |

P

>

c J

 (  )  y _ (  )   

Q

y (  )

W

n  ( -

g

n 

q

q

n )

F

1

q

2  [(

P

 n

q

2

q

 )(

P

n n

q

2

q

n )]

F

2 / n

F

1 (

x

)  

d

 -

e

-

iMx

 / 2 

P

| y  (  )   

Q

2

P

 y ( 0 )  y  ( 0 )   

Q

2

P

 y (  ) |

P

>    0 ,    0

Quark inside nucleus

( -

i

   

m

(

r

))

q n

(  )  (

E n

-

V

0 )

q n

(  ) QMC model ~

F

1 (

x

)  

d

 -

e

-

iMx

 / 2 

P

|

e

-

iV

  y  (  )   

Q

2

P

 y ( 0 ) 

e iV

  y  ( 0 )   

Q

2

P

 y (  ) |

P

>    0 ,    0 ~

F

1 (

x

)  

d

 -

e

-

iMx

 / 2 

P

|

e

-

iV

  y 0  (  )   

Q

2

P

 y 0 ( 0 ) 

e iV

  y 0  ( 0 )   

Q

2

P

 y 0 (  ) |

P

>    0 ,    0