IX Krajowa Szkoła: Nadprzewodnictwo Wysokotemperaturowe

Download Report

Transcript IX Krajowa Szkoła: Nadprzewodnictwo Wysokotemperaturowe

XI Krajowa Szkoła Nadprzewodnictwa
Zjawiska kolektywne i ich współzawodnictwo
Kazimierz Dolny, 25-29 września 2005 r.
organizowana w ramach
Krajowej Sieci Naukowej
Silnie skorelowane fermiony – od nadprzewodnictwa
do kolosalnego magnetooporu
Koordynator sieci: prof. dr hab. Henryk Szymczak
Finansowanie: KBN – Ministerstwo Nauki i Informatyzacji
KIW 2005
XI Krajowa Szkoła Nadprzewodnictwa „Zjawiska kolektywne i ich współzawodnictwo”
Kazimierz Dolny, 25-29 września 2005 r.
Nadprzewodnictwo – jak się ma w XXI
wieku ?
Karol Izydor Wysokiński
Uniwersytet Marii Curie Skłodowskiej
([email protected])
Nowe materiały z nadprzewodzącym
stanem podstawowym
 Nowe idee teoretyczne

KIW 2005
Brand new electron doped cuprates
Solid State Comm. 133, 427 (2005)
New class of T’-structure
cuprate superconductors
A. Tsukada, Y. Krockenberger,
M. Noda, H. Yamamoto, D. Manske,
L. Alff, M. Naito
KIW 2005
Non-oxide but perovskite
Recall MgB2: Nagamatsu, J., Nakagawa,
N., Murakana, Y.Z. and Akimitsu, J.,
Nature 410 63-64 (2001)
KIW 2005
Nature 411, 54 (2001)
Superconductivity in the nonoxide Perovskite MgCNi3
T. He, Q. Huang, A.P. Ramirez,
Y. Wang, K.A. Regan, N.
Rogado, M.A. Hayward,
M. K. Haas, J.S. Slusky, K.
Inumaru, H.W. Zandbergen,
N.P. Ong, and R.J. Cava
Here we report the observation
of super-conductivity at 8 K in
the perovskite structure
intermetallic compound
MgCNi3, linking what appear
at first sight to be mutually
exclusive classes of
superconducting materials.
(Tc = 7-8 K)
Family of wet superconductors:
NaxCoO2 · yH2O
Nature (London) 422, 53 (2003)
K. Takada, H. Sakurai, E. Takayama-Muromachi,
F. Izumi, R. A. Dilanian and T.Sasaki,
(Tc<5 K)
KIW 2005
SUPERCONDUCTIVITY IN ACTINIDES
KIW 2005
10 J. C. Ho, N. E. Phillips and T. F. Smith, Phys. Rev. Lett., 1966, 17, 694.
11 B. T. Matthias et al., Science, 1966, 151, 985.
12 B. B. Goodman et al., in Proc. VII Int. Conf. on Low Temp. Phys., eds., G. M.
Graham and A. C. Hollis Hallet, Univ. Toronto Press, Toronto, 1961, p. 350.
13 B. S. Chandraesekar and J. K. Hulm, Jr., J. Phys. Chem. Solids, 1958, 7, 259.
14 H. H. Hill and B. T. Matthias, Phys. Rev., 1968, 168, 464.
15 G. R. Stewart, Z. Fisk, J. O. Willis and J. L. Smith, Phys. Rev. Lett., 1984, 52, 679.
16 H. R. Ott, F. Hulliger, H. Rudiger and Z. Fisk, Phys. Rev. B, 1985, 31, 1329.
17 H. R. Ott, H. Rudiger, Z. Fisk and J. L. Smith, Phys. Rev. Lett., 1983, 50, 1595.
18 M. B. Maple, M. S. Torikachvili, C. Rossel, J. W. Chen, Physica, 1985, 135B, 430.
19 Y. Onuki et al., J. Phys. Soc. Jpn., 1989, 58, 795; P. Boulet et al., J. Alloys Compnds.,
1997, 262-263, 229.
20 B. T. Matthias, C. W. Chu, E. Corenzwit and D. Wohlleben, Proc. Nat. Acad. Sci.,
1969, 64, 459.
21 W. Schlabitz et al., Z. Phys. B, 1986, 62, 177.
22 S. S. Saxena et al., Nature, 2000, 406, 587.
23 T. Akazawa et al., J. Phys. Condens. Mat., 2004, 16, L29.
24 C. Geibel et al., Z. Phys. B, 1991, 84, 1.
25 C. Geibel et al., Z. Phys. B, 1991, 83, 305.
26 D. Aoki et al., Nature 2001, 413, 613.
27 J. L. Sarrao et al., Nature, 2002, 420, 297.
28 F. Wastin et al., J. Phys. Condens. Mat., 2003,15, S2279.
29 J. L. Smith and R. G. Haire, Science, 1978, 200, 535.
KIW 2005
Non-Centro symmetric superconductors
CePt3Si
Phys. Rev. Lett. 92, (2004)
E. Bauer, G. Hilscher, H. Michor
Ch. Paul, E.W. Scheidt,
A. Gribanov, Yu. Seropegin,
H. Noe M. Sigrist, and P. Rogl
„CePt3Si exhibits antiferromagnetic order at TN = 2,2 K and
enters into a heavy fermion
superconducting state at
Tc = 0.75 K. CePt3Si is the first
heavy fermion superconductor
without a center of symmetry.”
State dk = xky -ykx (irreducible
representation A2u of D4h) is a
possible pairing state
Also: UIr (under pressure) Tc=0.1K
KIW 2005
T. Akazawa et al..
J. Phys. Soc. Jpn (2004)
Heavy Fermion Superconductors
Supercond.
Tc
[K]
CePt3Si (a)
0.75
CeNiGe3 (b)
UIr
(c)
0.1
0.1
CeCoIn5 (d)
CeRhIn5 (d)
Ce6Yb (e)
C6Ca
(e)
Fe
(f)
Li
(g)
2.3
0.4
6.5
11.5
2
20
Hc2
[T]
3-5
0.028
5


[A] [A]
sc+
…
Order
par.
Note
100
AFM
s+p
1100
AFM
FM
Non-centro-symm.
(no inversion symm.)
pressure
No-inversion, pressure
d (lines)
pressure ~20 GPa
pressure
PuCoGa5 (i)
18.5 2500
d-wave, singlet
…
(a) E. Bauer et al. PRL 92 027003 (2004)
(f) K. Shimizu et al. Nature 412, 316-318 (2001)
(b) M. Nakashima et al. J. Phys. Cond. Matt. 16
(g) K. Shimizu et al. Nature 419, 597-599 (2002)
(2004) L255-L262
(h)
(c) Akazawa et al. J. Phys. Soc. Jap. 73 3129 (2004) (i) M. Ellesby SCES05, Abstr. Fr-NSC-4 p. 189
(d) C. Petrovic et al. (2001)
J. L. Sarrao et al. Nature 420, 297-299 (2002)
(e)
KIW 2005
Elements and simple compounds
Superconductivity at 39 K in magnesium diboride
Jun Nagamatsu, Norimasa Nakagawa, Takahiro Muranaka, Yuji Zenitani, Jun
Akimitsu
Nature 410, 63-64 (01 Mar 2001)
Superconductivity in the non-magnetic state of iron under pressure
Katsuya Shimizu et al..
Nature 412, 316-318 (19 Jul 2001)
Superconductivity in compressed lithium at 20 K
Katsuya Shimizu et al..
Nature 419, 597-599 (10 Oct 2002)
(Superconductivity in oxygen K. Shimizu, Nature 393, 767-769 (25 Jun 1998))
KIW 2005
PuCoGa5 (Tc=18.5 K ) and Heavy Fermion
Superconductors
Nature 420, 297 - 299 (21 November 2002)
Plutonium-based superconductivity with a transition temperature above 18 K
J. L. SARRAO, L. A. MORALES, J. D. THOMPSON, B. L. SCOTT, G. R. STEWART,
F. WASTIN, J. REBIZANT, P. BOULET, E. COLINEAU, G. H. LANDER
Europhys. Lett. 53 (2001) 354
A New Heavy-Fermion Superconductor CeIrIn5:
Relative of the Cuprates?
C. Petrovic et al.
The layered crystal structure of CeIrIn5 suggests
a possible analogy to the cuprates in which
spin/charge pair correlations develop well above Tc.
(Tc=0.4K)
J. Phys.: Condens. Matter 13 (2001) L337
Heavy-fermion superconductivity in CeCoIn5 at
2.3K
C. Petrovic et al..
KIW 2005
Ag5Pb2O6 –type I dirty superconductor
S. Yonezawa, and Y. Maeno
cond-mat/0509018, 1 Sep 2005
„These observations reveal that
Ag5Pb2O6 is probably the first
oxide that shows type-I superconductivity. Evaluation of the
superconducting parameters not
only gives conf-irming evidence
of type-I super-conductivity,but
also indicates that it is a dirty-limit
superconductor.”
KIW 2005
Pyrochlore Superconductors: Cd2Re2O7
PHYS. REV. LET. 87, 187001 (2001)
Superconductivity at 1 K in Cd2Re2O7
M. Hanawa, Y. Muraoka, T. Tayama,
T. Sakakibara, J. Yamaura, and Z. Hiroi
New Pyrochlore Oxide Superconductor
RbOs2O6
Resistivity, magnetic susceptibility and specific heat
measurements on polycrystalline samples evidence
a bulk superconductivity with Tc = 6.3 K.
S. Yonezawa, Y. Muraoka, Y. Matsushita, Z. Hiroi
J. Phys. Soc. Jpn. 73 (2004) 819
J. Phys. Soc. Jpn 73 (2004) 1651-1654
Unprecedented Superconductivity
in the beta-Pyrochlore Osmate KOs2O6
S. Yonezawa, Y. Muraoka, Z. Hiroi
New beta-Pyrochlore Oxide Superconductor CsOs2O6
S. Yonezawa, Y. Muraoka, Z. Hiroi
cond-mat/0404220
Carbon, carbon, carbon, …
• Intercalated graphite:0.5K – few K
• Boron-doped diamond: 5K
• Hot superconductivity in multi-walled
carbon nanotubes
„Magnetic evidence for hot superconductivity in multi-walled carbon
nanotubes”
Guo-meng Zhao and Pieder Beeli; cond-mat/0509018 v1 (1 Sep 2005)
„Our extensive magnetic data consistently show two
superconducting transitions, one at temperatures
between 550 K and 720 K, and another at about
1200 K”.
True or not?
In the world of ideas









Gossamer superconductivity (Laughlin, …)
Nano-phase separation (Dagotto, Markiewicz,
Wróbel, …)
Order Parameter Fluctuations (Emery, Micnas,
Robaszkiewicz, Kopeć, Domański, … )
Nanograins (Altshuler, Kresin, Spałek, …)
Quantum Critical Point (Sachdev, Rosch, Kopeć, …)
Magnetic Fluctuation
Hund’s rule coupling (Spałek, …)
Numerical approach (Scalettar, Maśka, Mierzejewski,
Litak …)
Breached pair superconductivity
(Wilczek, …)
KIW 2005