Transcript Slide 1
CHEM110W2 Ms Janine Kasavel [email protected] 031-2607747 Rm: 03-041 1 Quantitative Chemistry •matter •units •significant figures •atomic structure, isotopes, periodic table •basic nomenclature (ions, molecular &inorganic compounds) •stoichiometry and balancing equations by inspection •moles and Avogadro’s number •empirical and molecular formulae •limiting reagents 2 MATTER “matter is anything that has mass and takes up space” Pure Substance - ELEMENT: can’t be decomposed into simpler substances - COMPOUND: composed of 2/> different elements Mixture -HETEROGENEOUS: visibly different composition, properties or appearance -HOMOGENEOUS: visibly uniform composition, properties & appearance throughout 3 Physical properties of matter -measured without changing the identity or composition of the substance Chemical properties of matter -describe the way a substance may change or react to form other substances 4 UNITS Système International (SI) MASS LENGTH TIME TEMPERATURE G M k d c m µ n p giga mega kilo deci centi milli micro nano pico kilogram metre second Kelvin 109 106 103 10-1 10-2 10-3 10-6 10-9 10-12 kg m s K SCIENTIFIC NOTATION 5 SIGNIFICANT FIGURES 1) any figure that is not zero is significant. 2) zeroes between non-zero figures are significant. 3) exact (“counting”) numbers by definition have an ¥ number of s.f., so physical constants defined to be exact numbers do so also. 4) leading zeroes (to the left of the first non-zero figure) are not significant. 5) trailing zeroes (to the right of the last non-zero figure) are significant only if the number has a d.p. 6) in measurements without a d.p., the number of s.f. is ambiguous. 6 Using Significant Figures in Calculations • multiplication/division Number of s.f. in final answer is the same as the LEAST of numbers of s.f. in each of original measurements. • addition/subtraction Number of d.p. in final answer is the same as the LEAST of numbers of d.p. in each of original measurements. 7 DENSITY ρ = mass/ volume ρ: gcm-3 mass: g volume: cm3 8 PRACTICE EXAMPLE A nugget of gold with a mass of 521 g is added to 50.0 mL of water. The water level rises to a volume of 77.0 mL. What is the density of the gold? 9 ATOMIC STRUCTURE • • • • • Early Atomic Theory (Dalton 1803 – 1807) Cathode Rays & Particles (Thomson, 1897) Electron Charge & Mass (Millikan, 1909) Nuclear Atom (Rutherford, 1910) Modern Atomic Structure (Rutherford, 1919) PROTONS, NEUTRONS in the nucleus surrounded by orbiting ELECTRONS 10 Charge Proton Electron Neutron Actual/ Relative Coulombs 1.602 x 10-19 +1 1.602 x 10-19 -1 0 0 Mass Actual/ g 1.673 x 10-24 9.109 x 10-28 1.675 x 10-24 Relative/ u 1.00727 0.00054858 1.00866 11 Ia 1 H PERIODIC TABLE OF THE A ELEMENTS 1.008 4 Li Be 6.941 9.012 11 12 Na Mg 22.99 24.31 19 20 2 ZE II a 3 VIII a IV b Vb VI b VII b 21 22 23 24 25 ┌───VIII b───┐ Ib II b 26 29 30 27 28 IV a Va VI a VII a 5 6 7 8 9 10 B C N O F Ne 10.81 12.01 14.01 16.00 19.00 20.18 13 14 15 16 17 18 Al Si P S Cl Ar 26.98 28.07 30.97 32.07 35.45 39.95 31 32 33 34 35 36 4.003 A: mass number = no. protons + no. neutrons Z: atomic number = no. protons /electrons III b He III a K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 39.10 40.08 44.96 47.88 50.94 52.00 54.94 55.85 58.93 58.69 63.55 65.39 69.72 72.61 74.92 78.96 79.90 83.80 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe 85.47 87.62 88.91 91.22 92.91 95.94 *98.91 101.1 102.9 106.4 107.9 112.4 114.8 118.7 121.8 127.6 126.9 131.3 55 56 57 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn 132.9 137.3 138.9 178.5 181.0 183.8 186.2 190.2 192.2 195.1 197.0 200.6 204.4 207.2 209.0 *209.0 *210.0 *222.0 87 88 89 Fr Ra *223.0 *226.0 59 60 61 62 63 64 65 66 67 68 69 70 71 * Ac ** *227.0 58 *Lanthanides **Actinides Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 140.1 140.9 144.2 *146.9 150.4 152.0 157.3 158.9 162.5 164.9 167.3 168.9 173.0 175.0 90 91 92 93 94 95 96 97 98 99 100 101 102 103 Th Pa U *232.0 *231.0 *238.0 Np Pu Am Cm Bk Cf Es Fm Md No *237.1 *251.1 *252.1 *244.1 *243.1 *247.1 *247.1 *257.1 *258.1 *259.1 Lr *260.1 12 Isotopes Atoms of the same element with different mass numbers due to: different numbers of neutrons 13 Average atomic mass AAM: average atomic mass IM: isotopic mass 14 PRACTICE EXAMPLE Naturally occurring Mg has three isotopes: 24Mg (78.90 %) 23.9850 u 25Mg (10.00 % )24.9858 u 26Mg (11.10 %) 25.9826 u AAM=? 15 16 IONS • If electrons are added to or removed from a neutral atom, an ion is formed. • When an atom or molecule loses electrons it becomes positively charged CATION (E+) 11 e11 p+ Na atom 10 e11 p+ Na+ ion 17 L.Pillay 2010 When an atom or molecule gains electrons it becomes negatively charged ANION (E-). 17 18 e- e- 17 p+ 17 p+ Cl atom Cl- ion • Generally, metal atoms tend to lose electrons (forms cations) and non-metal atoms gain electrons (forms anions). 18 L.Pillay 2010 COMMON CATIONS CHARGE FORMULA NAME +1 H+ Hydrogen ion + Li Lithium ion + Na Sodium ion K+ Potassium ion + Rb Rubidium ion + Cs Cesium ion + Ag Silver ion NH4+ Ammonium ion + Cu Copper(I) or cuprous ion 2+ +2 Mg Magnesium ion 2+ Ca Calcium ion 2+ Sr Strontium ion 2+ Ba Barium ion 2+ Zn Zinc ion 2+ Cd Cadmium ion 2+ Co Cobalt(II) or cobaltous ion 2+ Cu Copper(II) or cupric ion 2+ Fe Iron(II) or ferrous ion 2+ Mn Manganese(II) or manganous ion 2+ Hg Mercury(II) or mercuric ion 2+ Hg2 Mecury(I) or mercurous ion 2+ Ni Nickel(II) or nickelous ion Pb2+ Lead(II) or plumbous ion 2+ Sn Tin(II) or stannous ion 3+ +3 Al Aluminium ion 3+ Cr Chromium(III) or chromic ion Fe3+ Iron(III) or ferric ion 19 COMMON ANIONS CHARGE FORMULA NAME -1 H Hydride ion F Fluoride ion Cl Chloride ion Br Bromide ion I Iodide ion CN Cyanide ion OH Hydroxide ion CH3COO A cetate ion ClO3 Chlorate ion ClO4 Perchlorate ion NO3 Nitrate ion MnO4 Permanganate ion 2-2 O Oxide ion 2O2 Peroxide ion 2S Sulfide ion 2CO3 Carbonate ion 2CrO4 Chromate ion 2Cr 2O7 Dichromate ion 2+ SO4 Sulphate ion 3-3 N Nitride ion 3PO4 Phosphate ion 20 Ionic compounds • Composed of nonmetal and metal • Cations and anions attract each other to form a neutral compound NAMES: • Name of metal (cation) written first • If metal has more than one common charge , write the charge in roman numerals in brackets • Name of nonmetal (anion) written next with –ide ending FORMULAE: • compounds are electrically neutral, the formula of a compound can easily be constructed simply by: -writing value of cation charge as subscript on anion -writing value of anion charge as subscript on cation 21 PRACTICE EXAMPLE NaCl K2SO4 Ba(OH)2 cobalt(II) nitrate silver sulfide ferric chloride 22 Oxyanion ClO4ClO3ClO2ClO- perchlorate ion (one more O atom than chlorate) chlorate ion (one more O atom than chlorite) chlorite ion (one more O atom than hypochlorite) hypochlorite ion Acids - acids containing anions whose names end in -ide are named by changing the -ide ending to -ic, adding the prefix hydro- to this anion name, and then following with the word acid - acids containing anions whose names end in -ate/-ite are named by changing the -ate ending to -ic or the -ite ending to -ous and then adding the word acid 23 PRACTICE EXAMPLE Anion Corresponding acid ClS2ClO4ClO3ClO2ClO- 24 MOLECULAR COMPOUNDS • Generally composed only of nonmetals • Diatomic species includes O2 N2, F2, Br2, I2 NAMING: • name of element furthest left on periodic table generally written first • both elements in same group on periodic table, element with higher Z written first • name of 2nd element given the ending –ide • Greek prefixes used to indicate number of atoms of each element Greek prefixes: mono, di, tri, tetra, penta, hexa, hepta, octa, nona, deca 1 2 3 4 5 6 7 8 9 10 25 PRACTICE EXAMPLE SO2 PCl5 N2O3 NF3 P4S10 silicon tetrabromide 26 STOICHIOMETRY “quantities of substances consumed and produced in chemical reactions” • Atoms are neither created or destroyed in a chemical reaction. • A chemical equation must have equal numbers of atoms of each element on each side of the arrow. • The molecular composition of certain ions must remain the same on each side of the arrow. 27 PRACTICE EXAMPLE C2H6 + O2 → CO2 + H2O Al + HCl → AlCl3 + H2 28 MOLE & AVOGADRO’S NUMBER Number of atoms/molecules/ions represented as mole amounts Avogadro’s number: NA = 6.022 X 1023 1 mol 12C atoms = 6.022 X 1023 12C atoms 1 mol H2O molecules = 6.022 X 1023 H2O molecules 1 mol NO3 - ions = 6.022 X 1023 NO3- ions 29 Molar mass “Mass in grams of one mole of a substance” • Related to mole amount of a substance by the equation: m n MM n: number of moles (in mol) m: mass (in grams) MM: molar mass (in grams per mole) 30 PRACTICE EXAMPLE How many oxygen atoms are in 1.50 mol of sodium carbonate? 31 EMPIRICAL AND MOLECULAR FORMULA “Ratio of atoms of each element in a compound” Mass % elements Assume 100g sample Grams of each element Use molar mass Moles of each element Empirical formula Calculate mole ratio 32 PRACTICE EXAMPLE Determine the empirical formula of a compound with 10.4% C, 27.8% S and 61.8% Cl. 33 QUIZ 2 • Wed 17 August during the tut • Stoichiometry (slide 28) until end quantitative chemistry TUTS • Check chem foyer for new tut group lists after 1pm on Monday 15/08 34 PRACTICE EXAMPLE Eucalyptol has an empirical formula of C10H18O. The experimentally determined molecular mass of this substance is 152 u. What is its molecular formula? 35 Ia 1 H VIII a PERIODIC TABLE OF THE ELEMENTS II a 1.008 2 III a IV a Va VI a VII a He 4.003 3 4 5 6 7 8 9 10 Li Be B C N O F Ne 6.941 9.012 10.81 12.01 14.01 16.00 19.00 20.18 11 12 13 14 15 16 17 18 Al Si P S Cl Ar 26.98 28.07 30.97 32.07 35.45 39.95 31 32 33 34 35 36 Na Mg 22.99 24.31 19 20 III b IV b Vb VI b VII b 21 22 23 24 25 ┌───VIII b───┐ Ib II b 26 29 30 27 28 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 39.10 40.08 44.96 47.88 50.94 52.00 54.94 55.85 58.93 58.69 63.55 65.39 69.72 72.61 74.92 78.96 79.90 83.80 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe 85.47 87.62 88.91 91.22 92.91 95.94 *98.91 101.1 102.9 106.4 107.9 112.4 114.8 118.7 121.8 127.6 126.9 131.3 55 56 57 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn 132.9 137.3 138.9 178.5 181.0 183.8 186.2 190.2 192.2 195.1 197.0 200.6 204.4 207.2 209.0 *209.0 *210.0 *222.0 87 88 89 Fr Ra *223.0 *226.0 59 60 61 62 63 64 65 66 67 68 69 70 71 * Ac ** *227.0 58 *Lanthanides **Actinides Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 140.1 140.9 144.2 *146.9 150.4 152.0 157.3 158.9 162.5 164.9 167.3 168.9 173.0 175.0 90 91 92 93 94 95 96 97 98 99 100 101 102 103 Th Pa U *232.0 *231.0 *238.0 Np Pu Am Cm Bk Cf Es Fm Md No *237.1 *251.1 *252.1 *244.1 *243.1 *247.1 *247.1 *257.1 *258.1 *259.1 Lr *260.1 36 LIMITING REACTANTS • In chemical reactions one reactant (the LIMITING reactant (LR)) is used up first • The reaction stops once LR used up leaving the excess reactants as leftovers • The LR limits the amount of product formed 37 1. Balance equation 2. Determine the molar masses 3. Calculate the number of moles for each reactant and divide by stoichiometric coefficients 4. Smallest mole amount =LR 38 PRACTICE EXAMPLE Determine (i) which reactant is the limiting reactant and (ii) how much excess reactant is leftover in the following reaction: 3NH4NO3 + Na3PO4 → (NH4)3PO4 + 3NaNO3 30.0 g 50.0 g 39 Theoretical yield • Quantity of product that is calculated to form, based on LR • Actual yield is the mass of product obtained when the experiment is carried out • Percent yield relates actual yield to theoretical yield % Yield = (actual yield/theoretical yield) x 100% 40 PRACTICE EXAMPLE Determine the theoretical yield and the % yield of NaNO3 if 15.0 g of sodium nitrate is formed when the reaction is carried out. 3NH4NO3 + Na3PO4 → (NH4)3PO4 + 3NaNO3 30.0 g 50.0 g 41 QUANTITATIVE CHEMISTRY REVISION CHAPTER 1 and 2 42