No Slide Title

Download Report

Transcript No Slide Title

COST531 Joint WG1/2 meeting
SGTE/ NPL Database
Activities
Alan Dinsdale
NPL Materials Centre
NPL, UK
13 June 2003
Scope of presentation






SGTE
NPL / SGTE database
Conclusions from Paris meeting
Uses of the database
Specific calculations and assessments
Prediction of surface tension
COST531: Working groups






Thermodynamics and Phase Diagrams
 Literature search and selection of key systems
Optimised phase diagrams
 Creation of critically assessed thermodynamic database
 Also estimation of surface tension, wettability, electrical properties
Physical properties
 Measurement of wettability, surface tension, viscosity, mechanical
behaviour …
Chemical properties
 Oxidation behaviour, toxicity, environmental aspects
Reliability
 Thermal shock, overload failure, age hardening ….
Processing and Packaging
 Flip chip technique etc.
SGTE Members






Canada
ThermFact, Montreal.
France
Institute National Polytechnique, Grenoble. (LTPCM)
Association THERMODATA, Grenoble.
IRSID, Maizières-les-Metz.
Université Paris Sud, Chatenay-Malabry. (LCPMB)
Germany
RWTH, Aachen. (Department of Materials Chemistry)
Max Planck Institut für Metallforschung, Stuttgart. (PML)
GTT Technologies, Hertzogenrath.
Sweden
Royal Institute of Technology, Stockholm. (Department of Materials
Science and Engineering)
Thermo-Calc Software AB Stockholm.
United Kingdom
National Physical Laboratory, Teddington. (Materials Centre)
AEA Technology, Harwell.
USA
The Spencer Group, Ithaca
Possible future members
 NIST
 Tohoku University
 NASA
Landolt-Börnstein
Numerical Data and Functional Relationships in Science and
Technology
New Series / Editor in Chief: W. Martienssen
Group IV: Physical Chemistry
Volume 19
Thermodynamic Properties of Inorganic Materials
compiled by SGTE
Subvolume B
Binary Systems
Phase Diagrams, Phase Transition Data,
Integral and Partial Quantities of Alloys
Part 1
Elements and Binary Systems from Ag-Al to Au-Tl
Contents of the NPL / SGTE database
 Designed for use in the calculation of phase equilibria involving
solders and other low melting alloy systems.
 Covers the following 12 elements
Ag, Al, Au, Bi, Cu, Ge, In, Pb, Sb, Si, Sn, Zn
Contains data for
 Binary systems (all 66 except Au-Zn)
 Ternary systems (15 systems specifically assessed)
Ag-Bi-Sn, Ag-Cu-Pb, Ag-Cu-Sn, Ag-Pb-Sn, Al-Cu-Si, Al-Sn-Zn,
Au-In-Pb, Bi-In-Pb, Bi-In-Sn, Bi-In-Zn, Bi-Pb-Sn, Bi-Sn-Zn,
Cu-Pb-Sn, In-Pb-Sn, In-Sn-Zn
 Predictions can be made of thermodynamic properties of phase
equilibria for wide range of compositions in that 12 component
system
Agreement between SGTE and COST531
 SGTE to provide a preliminary database for
 use within COST531
 internal research
 SGTE, in return, will be able to use COST531 data.
Database management
 Need to agree on




Scope of the database
Unary data
Key binary (and ternary ?) data
Models
Paris meeting: July 2002
Conclusions from Paris meeting
 Concentrate on:
Ag-Bi-Cu-Sn
 with the addition of
Au, In, Ni, P, Pd, Sb, Zn
 Plus (?)
Al, Pb
Possible initial scope of database:
Ag-Bi-Cu-Pb-Sn with (Ni-P) and Pd
Other datasets available
(not in SGTE solders database)





Ag-Ni, Ag-Pd
Cu-Ni, Cu-P
Ni-P, Ni-Pd, Ni-Sn
Pb-Pd
Pd-Sn
Missing systems
 Binary systems:
Ag-P, Bi-Ni, Bi-P, Bi-Pd, Cu-Pd, P-Sn, Ni-Pb, P-Pb
 Ternary systems:
Ag-Bi-Cu, Bi-Cu-Sn, Ag-Cu-Ni, Ag-Ni-Sn, Ag-Cu-P,
Ag-P-Sn, Cu-P-Sn, Ag-Cu-Pd, Ag-Pd-Sn, Cu-Pd-Sn
Unary data
 Based on CALPHAD 1991, 15(4), 317-425
 Updated version for CALPHAD 2003 (?)
 Major changes for solders relate to:
Sn
hcp_a3
fcc_a1
tetragonal_a6
In
fcc_a1
tet_alpha1
bct_a5
rhombohedral_a5
biin_epsilon
hcp_zn
Key papers from CALPHAD conference
 Ursula Kattner: “Thermodynamic assessment of the SnCu-Ni and Sn-Ag-Cu-Ni system”
 Zbigniew Moser: “Physical, electrical and mechanical
studies of (Sn-Ag_eut+Cu=Pb-free soldering materials”
 Ales Kroupa: “Database for calculation of lead free
solders”
 Nele Moelans: “Thermodynamic optimization of the leadfree solder system Bi-In-Sn-Zn”
Types of properties covered






Enthalpies
Vapour pressures
Specific heat
Phase diagrams
Liquidus and solidus temperatures
Molar volumes and densities
Uses of the database
 To calculate the liquidus and solidus temperatures of a
solder
 To calculate the effect of contamination of a new lead
free solder with a conventional Pb-Sn solder
 To calculate the enthalpy release on solidification of a
solder
 To calculate the volume changes in a solder on
solidification and during thermal cycling
 Calculation of surface tension
Specific calculations





Binary phase diagrams
Ternary phase diagrams
Isopleths
Effect of pressure
Constant composition vs temperature




Mass phase
Heat capacity
Volume
Enthalpy
 Prediction of surface tension
Cu-Sn
1400
Pressure/Pa 1.01325E5
Transformation
Temperatures / K
911.55
688.20
499.97
460.70
505.08
460.70
1029.67
1068.51
1357.78
860.88
792.73
624.30
855.62
913.24
950.14
863.12
1200
Temperature / K
1000
800
600
400
Calculated 14:39:25 30-SEP-2002
Data file D:\atd\Data\solders\v2_3\testing\def.mpi
Results file D:\atd\Data\solders\v2_3\testing\def44.nbr
Log file D:\atd\Data\solders\v2_3\testing\mt1.log
0.0
2002-06-13
Cu
0.2
0.4
0.6
x Sn
0.8
1.0
Sn
Au-In
1400
Pressure/Pa 1.01325E5
Transformation
Temperatures / K
449.63
914.80
1337.33
907.09
765.66
759.36
591.88
486.61
723.86
783.32
730.65
722.80
759.37
770.33
811.83
429.37
429.75
1200
Temperature / K
1000
800
600
400
Calculated 14:37:38 30-SEP-2002
Data file D:\atd\Data\solders\v2_3\testing\def.mpi
Results file D:\atd\Data\solders\v2_3\testing\def26.nbr
Log file D:\atd\Data\solders\v2_3\testing\mt1.log
0.0
2002-06-13
Au
0.2
0.4
0.6
x In
0.8
1.0
In
Au-Sn
1400
Pressure/Pa 1.01325E5
Transformation
Temperatures / K
801.26
1337.34
391.46
796.91
552.42
463.92
685.80
586.06
529.10
489.69
505.08
1200
Temperature / K
1000
800
600
400
Calculated 14:37:55 30-SEP-2002
Data file D:\atd\Data\solders\v2_3\testing\def.mpi
Results file D:\atd\Data\solders\v2_3\testing\def30.nbr
Log file D:\atd\Data\solders\v2_3\testing\mt1.log
0.0
2002-06-13
Au
0.2
0.4
0.6
x Sn
0.8
1.0
Sn
Pb-Sn
700
Pressure/Pa 1.01325E5
Transformation
Temperatures / K
456.14
285.83
286.14
600.62
505.08
Temperature / K
600
500
400
300
Calculated 14:41:32 30-SEP-2002
Data file D:\atd\Data\solders\v2_3\testing\def.mpi
Results file D:\atd\Data\solders\v2_3\testing\def59.nbr
Log file D:\atd\Data\solders\v2_3\testing\mt1.log
200
0.0
2002-06-13
Pb
0.2
0.4
0.6
x Sn
0.8
1.0
Sn
Sn
Ag-Sn-Pb
Plotted 14:42:32 30-SEP-2002
Data D:\atd\Data\solders\v 2_3\testing\def .mpi
Results D:\atd\Data\solders\v 2_3\testing\def 2.tnr
Log D:\atd\Data\solders\v 2_3\testing\mt1.log
470 K
0.8
0.2
0.6
x
1.01325E5 Pa
0.4
x
Sn
0.4
0.6
0.2
Ag
0.8
0.8
0.6
0.4
x
2002-06-13
Pb
Ag
0.2
Pb
Sn-Ag-Cu system: Temperature-composition section
0 wt% Ag, 3.27 wt% Cu - 8.9 wt% Ag, 0 wt% Cu
620
CONSTRAINTS
P/Pa or V/m3
LIQUIDUS (00MOO/BOE)
SECONDARY SOLIDIFICATION (00MOO/BOE)
EUTECTIC TEMPERATURE (00MOO/BOE)
600
Start
Sn
Ag
Cu
580
LIQUID
96.7300
0.0000
3.2700
End
560
Temperature / K
1.01325E5
Sn
Ag
Cu
91.1000
8.9000
0.0000
540
LIQUID + CU6SN5
520
LIQUID + AGSB_ORTHO
BCT_A5 + LIQUID + CU6SN5
BCT_A5 + LIQUID
+ AGSB_ORTHO
LIQUID +
AGSB_ORTHO +
CU6SN5
500
480
BCT_A5 + AGSB_ORTHO + CU6SN5
460
BCT_A5 + AGSB_ORTHO + CU6SN5_P
Calculated 12:32:24 2-SEP-2002
Replotted 12:35:37 2-SEP-2002
Data d:\jag\solders\def.mpi
Results d:\jag\solders\def.iso
Log d:\jag\solders\mt65.log
440
0
Start
2002-08-30
2
4
Weight % Ag
6
8
End
Liquidus Contours
623
14
Sn-Ag-Cu
Replotted 15:51:46 30-AUG-2002
Data d:\jag\solders\def .mpi
Results d:\jag\solders\def .con
Log d:\jag\solders\mt62.log
491 - 653 K
613
101325 Pa
603
12
Experimental eutectic (00MOO/BOE)
Calculated primary phase boundaries (00MOO/BOE)
593
583
10
573
563
wt%
Ag
AGSB_ORTHO
8
553
543
533
6
523
513
4
CU6SN5
491
493
BCT_A5
2
497
495
513
533
553 563 573
523 543
583
593
603
613
623
633
499
643
501
503
Sn
653
0.8
1.6
2.4
wt%
2002-08-30
Cu
3.2
4.0
4.8
Sn
Cu-Sn-Pb
Plotted 12:15:32 31-OCT-2002
Data d:\jag\solders\def .mpi
Results d:\jag\solders\ternary 389.tnr
Log d:\jag\solders\mt150.log
1108 K
0.8
0.2
101325 Pa
SEPARATION INTO TWO LIQUIDS
AT 1108 K (31BRI)
0.6
w
0.4
LIQUID
w
Pb
Sn
0.4
0.6
LIQUID +
FCC_A1
LIQUID +
LIQUID
0.2
0.8
LIQUID + LIQUID + FCC_A1
LIQUID + FCC_A1
Cu
0.8
0.6
0.4
w
2002-10-23
Cu
0.2
Pb
D:\atd\Data\solders\v2_3\testing\def4 16:48:20 30-SEP-2002
CONSTRAINTS
P/atm=1
n(Sn)/mol=84.2531
n(Ag)/mol=2.781172
n(Cu)/mol=1.573663
Worst error=1.690784E-5
No. of calculations=100
No. shown on plot=100
7200
7180
10.3x (1/(V/m3 of system))
7160
7140
7120
7100
7080
7060
7040
7020
486
488
490
4.72
T/K
492
494
Data D:\atd\Data\solders\v 2_3\testing\def .mpi
Results D:\atd\Data\solders\v 2_3\testing\def 4.GPH
Log D:\atd\Data\solders\v 2_3\testing\MT2.LOG
Calculated 16:48:20 30-SEP-2002
Plotted 16:53:37 30-SEP-2002
D:\atd\Data\solders\v2_3\testing\def4 16:48:20 30-SEP-2002
10
BCT_A5
CONSTRAINTS
P/atm=1
n(Sn)/mol=84.2531
n(Ag)/mol=2.781172
n(Cu)/mol=1.573663
Worst error=1.690784E-5
No. of calculations=100
No. shown on plot=100
LIQUID
BCT_A5
9
8
LIQUID
mass(phase)/kg
7
6
5
4
3
BCT_A5
2
1
0
486
488
490
4.72
T/K
492
494
Data D:\atd\Data\solders\v 2_3\testing\def .mpi
Results D:\atd\Data\solders\v 2_3\testing\def 4.GPH
Log D:\atd\Data\solders\v 2_3\testing\MT2.LOG
Calculated 16:48:20 30-SEP-2002
Plotted 16:50:54 30-SEP-2002
D:\atd\Data\solders\v2_3\testing\def1 16:37:37 30-SEP-2002
CONSTRAINTS
P/atm=1
n(Sn)/mol=84.2531
n(Ag)/mol=2.781172
n(Cu)/mol=1.573663
Worst error=5E-6
No. of calculations=151
No. shown on plot=151
1.75
103x V/m3 of system
1.70
1.65
1.60
1.55
1.50
1.45
250
300
350
400
4.72
T/K
450
500
Data D:\atd\Data\solders\v 2_3\testing\def .mpi
D:\atd\Data\solders\v 2_3\testing\def 1.GPH
550Results
Log D:\atd\Data\solders\v 2_3\testing\MT2.LOG
Calculated 16:37:37 30-SEP-2002
Plotted 16:40:24 30-SEP-2002
D:\atd\Data\solders\v2_3\testing\def4 16:48:20 30-SEP-2002
KEY
1-AGZN3
2 BCT_A5
3-BCT_A5
4 LIQUID
5 AGSB_ORTHO
6-GAMMA_AGZN
7-BCC_A2
8-HCP_A3
9-HCP_ZN
10-FCC_A1
11-FCC_A1
12-CUB_A13
13-ALCU_EPSILON
14-ALCU_ETA
15-GAMMA_DO3
16-GAMMA_DO3
17-LAVES_C14
18-LAVES_C15
19-LAVES_C36
20-CU10SN3
21-CU3SN
22-CU41SN11
23 CU6SN5
24-CU6SN5_P
25-DIAMOND_A4
26-INSN_GAMMA
27-RHOMBOHEDRAL_A7
28-TETRAGONAL_A6
29-TET_ALPHA1
30-SB1SN1
31=2,5,23
32=2,4,23
4500
4000
10-3x Cp of system /J K-1
3500
3000
CONSTRAINTS
P/atm=1
n(Sn)/mol=84.2531
n(Ag)/mol=2.781172
n(Cu)/mol=1.573663
Worst error=1.690784E-5
Ref(Sn)=as data
Ref(Ag)=as data
Ref(Cu)=as data
No. of calculations=100
No. shown on plot=100
2500
2000
1500
1000
500
0
32
31
486
488
490
4.72
T/K
492
494
Data D:\atd\Data\solders\v 2_3\testing\def .mpi
Results D:\atd\Data\solders\v 2_3\testing\def 4.GPH
Log D:\atd\Data\solders\v 2_3\testing\MT2.LOG
Calculated 16:48:20 30-SEP-2002
Plotted 16:56:07 30-SEP-2002
D:\atd\Data\solders\v2_3\testing\def4 16:48:20 30-SEP-2002
KEY
1-AGZN3
2 BCT_A5
3-BCT_A5
4 LIQUID
5 AGSB_ORTHO
6-GAMMA_AGZN
7-BCC_A2
8-HCP_A3
9-HCP_ZN
10-FCC_A1
11-FCC_A1
12-CUB_A13
13-ALCU_EPSILON
14-ALCU_ETA
15-GAMMA_DO3
16-GAMMA_DO3
17-LAVES_C14
18-LAVES_C15
19-LAVES_C36
20-CU10SN3
21-CU3SN
22-CU41SN11
23 CU6SN5
24-CU6SN5_P
25-DIAMOND_A4
26-INSN_GAMMA
27-RHOMBOHEDRAL_A7
28-TETRAGONAL_A6
29-TET_ALPHA1
30-SB1SN1
31=2,5,23
32=2,4,23
1100
1000
10-3x Enthalpy of system /J
32
900
CONSTRAINTS
P/atm=1
n(Sn)/mol=84.2531
n(Ag)/mol=2.781172
n(Cu)/mol=1.573663
Worst error=1.690784E-5
Ref(Sn)=as data
Ref(Ag)=as data
Ref(Cu)=as data
No. of calculations=100
No. shown on plot=100
800
700
600
500
31
486
488
490
4.72
T/K
492
494
Data D:\atd\Data\solders\v 2_3\testing\def .mpi
Results D:\atd\Data\solders\v 2_3\testing\def 4.GPH
Log D:\atd\Data\solders\v 2_3\testing\MT2.LOG
Calculated 16:48:20 30-SEP-2002
Plotted 16:56:24 30-SEP-2002
Prediction of surface tension
 Based on the approach of Tanaka
 Using the Butler equation to estimate the surface tension from bulk
thermodynamic properties
 Tested with success for metallic and ionic melts
 Assumes an equilibrium between the bulk liquid and the surface
liquid
 Generalised and extended in this project to cover multicomponent
systems
 Tested in detail for solder systems
 Uses the new database for solders
 Makes use of Brian Keene’s review of experimental surface
tension data for tin and lead free solders (1993)
 Provides good basis for virtual measurement system for solders
Model for surface tension (1)
 As originally presented:
RT (1  x2S ) 1 E ,S 1 E , B
   1  ln
 G1  G1
B
A1 (1  x2 ) A1
A1
RT x2S 1 E ,S 1 E , B
2 
ln B  G 2  G 2
A2 x2 A2
A2
 This relates the surface tension of the binary alloy to the
surface tension of the pure components and the
thermodynamic properties of the bulk and the surface
monolayer
Model for surface tension (2)
 These equations can be transformed into:
E ,S
1
 RT ln(x )  G
E ,S
2
 R T ln(x )  G
A1 ( 1   )  RT ln(x )  G
S
1
A2 ( 2   )  RT ln(x )  G
S
2
B
1
B
2
 and expresses that the chemical potential of the
components is equal in the bulk and surface layer
 The thermodynamic properties of the bulk are well
represented by standard thermodynamic models
E,B
1
E,B
2
Model for surface tension (3)
 The thermodynamic properties of the surface layer is
given by:
G S  x1S A1 ( 1   )  x2S A2 ( 2   )  G S ,mix
 Where A1 is the surface area of component 1, 1 is the
surface tension of component 1
A1 1.091N V
1/ 3
0
2/ 3
1
 N0 is the Avogadro number and V1 the molar volume of
component 1
Model for surface tension (4)

There is an empirical relationship between Gmix , the excess Gibbs
energy of mixing, for the surface and Gmix for the bulk
G

S ,mix
 0.83 G
B,mix
Gibbs energy of surface layer given by:
G S  x1S A1 ( 1   )  x2S A2 ( 2   )  G S ,mix


The surface tension, , is calculated to be the value which just
brings the surface into equilibrium with the bulk.
This allow the model to be generalised to any number of
components
Sample calculations: Bi-Sn 608 K
Calculated Surface Tension of Bi-Sn liquid at 608 K
0.60
PARAMETER VALUES
Parameters as in datafile
Mean squ error = 0.017305
Surface Tension / Nm-1
0.55
0.50
0.45
0.40
0.35
Optimisation: 10:17:54 30-MAY-2002
Plotted: 10:19:24 30-MAY-2002
Data: D:\atd\Data\surface tension\def.mpi
Experiment: D:\atd\Data\surface tension\stcalc.mac
Results: D:\atd\Data\surface tension\def.mpr
Log: D:\atd\Data\surface tension\mt15.log
0.30
0.0
DEV
0.2
0.4
0.6
x(Sn)
0.8
1.0
Surface composition: Bi-Sn 608 K
Calculated x(Sn) of Surface of Bi-Sn liquid at 608 K
1.0
PARAMETER VALUES
Parameters as in datafile
Mean squ error = 0.058
x(Sn<SURFACE>)
0.8
0.6
0.4
0.2
Optimisation: 14:35:19 26-SEP-2002
Plotted: 14:35:26 26-SEP-2002
Data: C:\MTDATA\Work\surface tension\DEF.MPI
Experiment: C:\MTDATA\Work\surface tension\stcalc2.mac
Results: C:\MTDATA\Work\surface tension\DEF.MPR
Log: C:\MTDATA\Work\surface tension\MT60.LOG
0.0
0.0
2002-06-13
0.2
0.4
0.6
x(Sn)
0.8
1.0
Ag-Sn 1273 K
Calculated Surface Tension of Ag-Sn liquid at 1273 K
1.0
PARAMETER VALUES
Parameters as in datafile
Mean squ error = 0.132513
Surface Tension / Nm-1
0.9
0.8
0.7
0.6
0.5
Optimisation: 13:32:47 26-SEP-2002
Plotted: 13:32:56 26-SEP-2002
Data: C:\MTDATA\Work\surface tension\DEF.MPI
Experiment: C:\MTDATA\Work\surface tension\stcalc.mac
Results: C:\MTDATA\Work\surface tension\DEF.MPR
Log: C:\MTDATA\Work\surface tension\MT58.LOG
0.4
0.0
2002-06-13
0.2
0.4
0.6
x(Sn)
0.8
1.0
Ag-Sn 40%Sn : effect of temperature
Calculated Surface Tension of 60:40 Ag-Sn liquid
0.70
PARAMETER VALUES
Parameters as in datafile
Mean squ error = 0.103516
Surface Tension / Nm-1
0.65
0.60
0.55
Optimisation: 14:15:43 26-SEP-2002
Plotted: 14:15:50 26-SEP-2002
Data: C:\MTDATA\Work\surface tension\DEF.MPI
Experiment: C:\MTDATA\Work\surface tension\stcalc1.mac
Results: C:\MTDATA\Work\surface tension\DEF.MPR
Log: C:\MTDATA\Work\surface tension\MT59.LOG
0.50
400
2002-06-13
600
800
T/K
1000
1200
Sn-Ag-Cu: variation with temperature
Calculated Surface Tension of Sn-Ag-Cu liquid
0.60
PARAMETER VALUES
Parameters as in datafile
M ean sq u error = 0.063161
Surface Tension / Nm-1
0.58
0.56
0.54
0.52
Optimisation: 12:17:13 11-OCT-2002
Plotted: 12:17:26 11-OCT-2002
Data: D:\atd\Data\surface tension\DEF.MPI
Experiment: D:\atd\Data\surface tension\stcalc3.mac
Results: D:\atd\Data\surface tension\DEF.MPR
Log: D:\atd\Data\surface tension\MT64.LOG
0.50
500
2002-10-04
550
600
650
T/K
700
750
800
Surface tension of pure Sn
Surface tension of pure Pb