Transcript Slide 1
Singularities in interfacial fluid dynamics Michael Siegel Dept. of Mathematical Sciences NJIT Supported by National Science Foundation Outline •Singularities on interfaces -Motivation and examples -Methods for analyzing singularities -Kelvin-Helmholtz -Rayleigh-Taylor -Hele-Shaw •Singularity formation in 3D Euler flow Example 1: Breakup of a viscous drop Shi, Brenner, Nagel ‘94 Similarity solution z z0 r ( z , t ) tR 1 / 2 t ; z 0 lo ca tio n o f p in ch o ff t tim e to p in ch o ff Eggers ’93 Stone, Lister ’98 (modifications due to exterior fluid) Kelvin-Helmholtz instability Krasny (1986) •Evolution of interface at different precision 7 digits -u u 16 digits 29 digits Kelvin-Helmholtz (cont’d) •Irregular point vortex motion at later times Krasny ‘86 Importance of singularity •Mathematical theory (existence of solutions, continuous dependence on data) • Numerical computation •Physical importance depends on particular problem Singularity removed by regularization Roll-up of vortex sheet at edge of circular tube Didden 1979 Regularized vortex sheet calculation Krasny 1986 d e cre a sin g 0 for t t c gives 'singular' structure Methods for analyzing singularities •Numerical •Similarity solutions -Jet pinch-off: Brenner, Eggers, Lister, Papageorgiou -3D Euler: Childress -Vortex Sheets: Pullin •Complex Variables -Bardos, •Unfolding -Caflisch Hou, Frisch, Sinai, Caflisch, Tanveer, S. Complex Variables: Canonical example 1 Laplace equation u tt u xx ( t i x )( t i x )u 0 u t iu x 0, u t iu x 0 •Initial value problem is ill-posed Complex Variables: Example 2 -Im plicit solution u ( x , t ) u 0 ( x0 ) x x 0 tu w here x 0 is the initial position of the straight line characteristic through x,t Burger’s equation example, cont’d E xa m p le - In itia l d a ta u 0 x 0 1/ 3 - x 0 (u ) u 3 - x ( u ) u tu 3 F ro m C a rd a n o 's fo rm u la 1 x t u ( x,t ) x 2 4 2 7 2 3 1/ 2 1/ 3 1 x t x 2 4 2 7 2 C o m p le x sin g u la ritie s co llid e , fo rm i n g sh o c k u ( x,t ) u0 x u 0 tu 0 is e xa m p le o f a n u n f o ld in g 3 3 1/ 2 1/ 3 Numerical analysis of complex singularities Sulem, Sulem, Frisch (1983) Vortex sheets: S., Krasny, Shelley, Baker, Caflisch Taylor-Green: Brachet and collaborators 2D Euler: Frisch and collaborators 3D Euler: Siegel and Caflisch z * i 1-D example 1 1 .9 e ix S ingularity pow er 1= 0.5 D istance to singularity in low er halfpla ne is 0.105 f ( x) 1 k k Singularity fit for Burger’s equation •Initial value problem solved using pseudo-spectral method, u=sin(x) data 1 k ln | uˆ k | k Singularity fit for Burger near shock 1 k Fit to Fourier coefficients in 2D Malakuti, Maung, Vi, Caflisch, Siegel 2007 f ( x, y ) x iA y 2 3 2 , =1 F o u rie r co e fficie n ts fˆk ,l l 1 l 2 l 3 l 4 k Outline •Singularities on interfaces -Motivation and examples -Methods for analyzing singularities -Kelvin-Helmholtz -Rayleigh-Taylor -Hele-Shaw •Singularity formation in 3D Euler flow Kelvin-Helmholtz instability z x ( , t ) iy ( , t ) •Birkhoff-Rott equation: L in e a r sta b ility o f fla t sh e e t (k ) | k | / 2 A rg u m e n t fo r sin g u la ritie s z |k | Ak e 2 t ik k Ak e k k p (p 0) u iv 1 2 i z z v e lo city d u e to p o in t v o rte x stre n g th a t z . Moore’s analysis (1979) M o o re a n a lyze d s in g u la rity fo rm a tio n th ro u g h a s ym p to tic s z A k ( t )e ik k Ak (t ) Ak 0 (t ) k 1 A k 0 ( t ) t (2 ) 1 2 (1 i ) k k 2 5 2 A k 2 ( t ) ... (k 0 ) t t e xp k (1 ln ) 2 4 C u rv a tu re s in g u la r ity i n c o m p le x p la n e , re a c h e s re a l lin e a t t t c w ith 1 tc 2 ln tc 4 0 Kelvin-Holmholtz (cont’d) •Numerical validation: Krasny(1986), Shelley(1992), Baker Cowley,Tanveer (1999) •Rigorous construction of singular solution, demonstration of ill-posedness (Duchon & Robert 1988, Caflisch & Orellana 1989) •Regularized evolution: vortex blobs (Krasny ’86) z t * 1 2 i z ( , t ) z ( , t ) * PV * | z ( , t ) z ( , t ) | 2 2 d ( 0 solution) ( 0 solution) for t t c •Surface tension regularization: Hou, Lowengrub, Shelley (1994), Baker, Nachbin (1997), S. (1995), Ambrose (2004) Vortex sheet singularity for Rayleigh-Taylor z x ( , t ) iy ( , t ) is a L a g ra n g ia n p a ra m e te r L in e a r sta b ility: (k ) | k | (from Ceniceros and Hou) Baker, S. , Caflisch 1993 Moore’s construction (Baker, Caflisch, S. ’93 interpretation) B irkhoff-R ott equation t z ( , t ) B ( z , ) 1 * 2 i PV ( , t ) z ( , t ) z ( , t ) d (+ e q n . fo r ) Look for z z z , - U pper analytic (pos. w avenum ber) z , low er analytic z Ignore interactions betw een z , z etc. (M oore's approx im atio n ) - E valuate B ( z , ) for upper analytic fu nctions z , z , etc. by * contour integration t z t + 1 2 1 z A 2 * , tz * 1 2 1 z 2 iA g ( z z ) * (1 z ) (1 z ) * T raveling w ave solutions (com plex w avesp eed) w ith singu larities Equivalence to Moore’s approximation A ( t )e i 2 B ( t )e i 3 C ( t )e i 5 A ( t )e i 7 B ( t )e i 2 C ( t )e i 5 2 7 3 2 5 9 B ( z, ) B ( z , ) B ( z , ) E ( z , , z , ) E product of , functions •Evaluate PV integral by contour integration ‘Moore’s’ equations for Rayleigh-Taylor (cont’d) •The system of `Moore’s’ equations admit traveling wave solutions (complex wavespeed) with 3/2 singularities •The speed of the nonlinear traveling wave is independent of the amplitude and identical to the speed given by a linear analysis •This is a general property of upper analytic systems of PDE’s, as long as system of ODE’s resulting from substitution of the traveling wave variable is autonomous e .g ., u t u u x iu u ikx t uˆ k e uˆ 1 iuˆ 1 k 1 i , uˆ 1 a rb itra ry gularity formation: comparison of asymptotics and numerics A H L H L Hele-Shaw flow: Problem formulation •Two-phase Hele-Shaw, or porous media, flow Vj u1 , p1 , 1 Vn u2, p2 , 2 Oil Water ui k i pi Boundary Conditions: u i V j as y k i h /(12 i ) 2 Colored water injected into glycerin NJIT Capstone Lab (Kondic) Hele-Shaw flow: one phase problem F o rw a rd p ro b le m s, in w h ich flu id re g io n e xp a n d s, a re sta b le B a ck w a rd p ro b le m s (flu id re g io n co n tra cts) a re u n sta b le (k ) | k | E xa ct so lu tio n s w h ich d e v e lo p cu sp s in fin ite tim e (Howison) -S h o w s ill-p o se d n e ss in n o n lin e a r e v o lu tio n •Exact solutions derived using conformal map Hele-Shaw: Conformal map z 0 z ( , t ) 2 ln i f ( , t ) n E xact solution: f ( , t ) j 1 plane A j ln 1 ( t ) j Singularity z plane P ro b le m is w e ll p o se d in | |>1 (e.g., Baker, S., Tanveer ’95) Zero surface tension limit A n a lytic e xte n sio n o f co n fo rm a l m a p (Tanveer ’93, S., Tanveer, Dai ’96) 1 z t q 1 ( , t ) z q 2 ( , t ) B 2 q 3 ( , t ) z 2 r ( , t ) , | |> 1 P e rtu rb a tio n th e o ry in | | 1 q i ( , t ) analytic z z 0 B z1 E xp a n sio n is re g u la r e xce p t n e a r p o le s a n d ze ro s o f z N e a r a ze ro z A 0 (t ) z 1 A0 ( t ) 0 ( t ) w h e re d ( t ) q 1 (0 ) 3 2 A2 ( t ) d ( t ) 3 2 d ( t ), t 0 M o tio n o f d a u g h te r sin g u la rity d iffe rs fro m th a t o f z e r o A n a lysis o f in n e r re g io n su g g e sts lo ca lize d (O (B 1 /3 )) clu ste r o f 4 / 3 sin g u la ritie s n e a r d 0 In in n e r re g io n , z d iffe rs b y O (1 ) fro m z , e v e n 0 w h e n z is sm o o th z 0 Channel problem Siegel, Tanveer, Dai ‘96 B=0 Hele-Shaw: Radial geometry Comparison of B=0.00025, B=0 evolution B=0.00025 evolution for over Long time Singularities in two-phase Hele-Shaw (Muskat) problem •Originally proposed as a model for displacement of oil by water in a porous medium •Much less is known about two phase Hele-Shaw flow •There are no know singular exact solutions •Detailed numerical studies suggest cusps can form (Ceniceros, Hou, Si 1999) Numerical solutions y x 2/3 Ceniceros, Hou and Si 1999 Construction of singular solution (S., Caflisch, Howison, CPAM 2004) •S., Caflisch, Howison prove a global existence theorem for forward problem with small data. The initial data is allowed to have a curvature (or weaker) singularity, but the solution is analytic for subsequent times (see also Ambrose (2004), Cordoba et al (2007) •Time reversibility implies there are solutions to the backward problem that start smooth but develop a curvature singularity -Not a foregone conclusion: bounded finger velocity in the two fluid case; negative interfacial pressure weakens “runaway” that leads to cusp formation Howison (2000) •In view of waiting time behavior (King, Lacey, Vasquez ’95), different techniques will be required to show cusp or corner formation •Shows backward Muskat problem is ill-posed (on non-linear theory) •Apply ideas to 3D Euler Strategy to show existence (stable case) and construct singular solutions •Approach is similar to that for Kelvin-Helmholtz problem (Duchon, Robert 1988, Caflisch, Orellana 1989) 1. Extend equations to complex 2. Put singularity in initial data 3. Construct solution within class of analytic functions •Derive preliminary existence result involving class of solutions of the form s ( , t ), w ( , t ) s are singular at t=0, e.g., Exact decaying solution of linearized system 0<p<1 •Remainder terms are estimated using abstract Cauchy-Kowalewski n 1 n 1 n n s theorem (Caflisch 1990) L(r ,w ) N (r ,w , s,w ) ss New Challenges presented by Muskat problem •Nonlinear term is considerably more complicated •Presence of a nonphysical ``reparameterization’’ mode (neutrally stable mode) -Analysis is modified to accommodate this mode by prescribing its data at , i.e., by requiring it to go to 0 as t •This results in an existence theorem for what appears to be a restricted set of data r r ( , 0) depends on s 0 s ( , 0) 0 •Introduction of a reparameterization converts to existence for any initial data •First (?) global existence result that relies on stable decay rate to show that solutions become analytic after initial time k Euler singularity problem is an outstanding open problem in mathematics & physics •Can a solution to the incompressible Euler equations become singular in finite time, starting from smooth (analytic) initial data? • Euler singularity connects Navier-Stokes dynamics to Kolmogorov scaling u 0c 2 k in e m a tic v isco sity Theoretical Results •Beale-Kato-Majda (1984) S in g u la rity fo rm a tio n a t tim e T T m ax x ( x, t ) d t m inim um grow th (T t ) 1 (modulo log terms) •Constantin-Fefferman-Majda (1996), Deng-Hou-You (2005) N o b lo w u p if d ire ctio n o f v o rticity = is sm o o th y d ire cte d Numerical Studies •Axisymmetric flow with swirl and 2D Boussinesq convection -Grauer & Sideris (1991, 1995), Pumir & Siggia (1992) Meiron & Shelley (1992), E & Shu (1994) Grauer et al (1998), Yin & Tang (2006) • High symmetry flows -Kida-Pelz flow: Kida (1985), Pelz & coworkers (1994,1997) -Taylor-Green flow: Brachet & coworkers (1983,2005) • Antiparallel vortex tubes -Kerr (1993, 2005) -Hou & Li (2006) •Pauls, Frisch et al(2006).: Study of complex space singularities for 2D Euler in short time asymptotic regime Hou and Li (2006) reconsidered Kerr’s (1993,2005) calculation Growth of maximum vorticity from Hou and Li (2006) •Rapid growth of vorticity •No conclusive numerical evidence for singularities e.g., Kerr’s (1993) numerics suggest singularity formation, but higher resolution calculations for same initial data by Hou & Li (2006) show double exponential growth of vorticity Growth of vorticity is bounded by double exponential From Hou & Li (2006) Complex singularities for axisymmetric flow with swirl 1 •Caflisch (1993), Caflisch & Siegel (2004) 2 •Annular geometry r1 r r2 , 0 z 2 •Steady background flow swirl u (0, u , u z )( r ) chosen to give instability with an unstable eigenmode iz t uˆ 1 ( r ) e Traveling wave solution C o n stru ct co m p le x, u p p e r-a n a lytic tra v e lin g w a v e so lu tio n Baker, Caflisch & Siegel (1993) Caflisch(1993), Caflisch & Siegel (2004) u u ( r ) u ( r , z, t ) in w h ich u ik ( z i t ) ˆ u ( r ) e k k 1 •Exact solution of Euler T ra v e lin g w a v e w ith sp e e d in Im (z) d ire ctio n T ra v e lin g w a v e sp e e d is th u s d e te rm in e d fro m lin e a r e ig e n v a lu e p ro b le m a n d is in d e p e n d e n t o f th e a m p litu d e Motivation for traveling wave form C o n stru ctio n o f so lu tio n is g re a tly sim p lifie d -D e g re e s o f fre e d o m re d u ce d O n e w a y co u p lin g a m o n g w a v e n u m b e rs so m o d e k d e p e n d s o n ly o n k k -C o m p u ta tio n a l e rro rs m in im ize d sin ce n o tru n ca tio n o r a lia sin g e rro rs in r e strictio n to fin ite n u m b e r o f F o u rie r co m p o n e n ts E q u a tio n f o r uˆ k h a s fo rm L k uˆ k Fk ( u , uˆ 1 , , uˆ k 1 ) L k is se co n d o rd e r O D E o p e ra to r Motivation (cont’d) S in g u la ritie s a t z z r i z i tra v e l w ith sp e e d in Im z d ire ctio n , re a ch re a l z lin e in fin ite tim e (fo r z i 0 ) S in g u la ritie s d e te cte d th ro u g h a sym p to tics o f F o u rie r co e fficie n ts uˆ (S u le m , S u le m & F ris ch 1 9 8 3 ) P ro v id e in fo rm a tio n o n g e n e ric fo rm o f s in g u la ri tie s Numerical method for swirl and axial background velocity P s e u d o s p e c tra l in z , 4 th o rd e r d is c re tiz a tio n (in r) fo r L k N u m e ric a l m e th o d is a c c u ra te b u t u n s ta b le -In s ta b ility c o n tro lle d u s in g h ig h -p re c is io n a rith e m e tic (1 0 -1 0 0 ) Caflisch & Siegel (2004) Re Perturbation construction of real singular solution Real remainder C o n sid e r u u u u u w h e re u u ( z ) * * u , u u , u u a re e xa ct so lu tio n s o f E u le r e q u a t io n s u sa tisfie s syste m o f e q u a tio n s in w h ich fo rcin g te rm s a re q u a d ra tic, i.e ., u u u u W e w a n t u , u O ( ) u O ( ) 2 F u ll co n stru ctio n re q u ire s a n a lysis sh o w in g th a t sin g u la rity o f u is sa m e o r w e a k e r t h a n th a t o f u , u (M a in to o l is C a u ch y-K o w a le w sk i T h m ) Difficulties •Numerical method is highly unstable, resolved using high precision arithemetic •Too numerically intensive for 3D •Square root singularity does not satisfy Beale-Kato-Majda theorem S in g u la rity fo rm a tio n a t tim e T T m ax x ( x, t ) d t 3D Traveling wave solution Siegel, Caflisch 2007 C o n stru ct u p p e r a n a lytic tra v e lin g w a v e , p e rio d ic in (x,y,z) Pos. wavenumber modes u uˆ k e xp i k ( x i σ t ) k >0 k ( k , l , m ), σ (1, 0, 0 ) x ( x, y , z ) Const. Fourier Coeffs. •Exact solution of Euler but for complex velocity T ra v e lin g w a v e w ith sp e e d in Im (x) d ire ctio n •Simplify construction -Base flow u 0, instability driven by forcing term F ( x )= 0 k <N Fˆk e xp i k ( x i σ t ) •No observed numerical instability! 3D traveling wave (cont’d) E u le r e q u a tio n s L k uˆ k G k ( uˆ k , uˆ k , 1 k j k , j 1, 2 , uˆ k ) n ,n S m a ll a m p litu d e s in g u la rity b y c h o ic e o f fo rc in g In tro d u c e in to fo rc in g ; w h e n = 0 , s o lu tio n u is e n tire . F o r s m a ll , s in g u la rity a m p litu d e is O ( ) Numerical method N o n lin e a r te rm s Nˆ k e v a lu a te d b y p se u d o s p e ctra l m e th o d N o tru n ca tio n e rro r in re strictio n to f in ite k S in ce N is q u a d ra tic, p a d d in g w ith ze ro e s e lim in a te s a lia sin g e rro r fro m p se u d o sp e ctra l p a r t o f ca lcu la tio n E xtre m e n u m e rica l in sta b ility e lim in a te d W e co m p u te tra v e lin g w a v e u , u u is re a l Fit of singularity parameters (1, 0, 0 ), 1 c 1 D fit: u ikx uˆ k ( y , z )e k 1 u c lo g ( x i | t | i ( y , z )) •BKM satisfied k 0 .1 Fit of singularity parameters c k Fit of singularity parameters 0 .0 1 c k Singularity amplitude m ax u c Singular surface Im x ( y , z ) σ (1, 0, 0 ) Im x z y •Geometry of singular surface is useful for analysis Other singularity types •Also find square root and cube root singularities Fit for cube root k Square root singularity N = 1 0 0 '+ ' N=140 ' ' N=160 ' ' 1 k Conclusions •Singularity formation is important in mathematical theory and numerical computation •Physical significance depends on particular problem •Singularities are often removed by regularization, but are relevant in understanding zero regularization limit •New results presented concerning complex singularities for 3D Euler,