Transcript Document
32nd Turbomachinery Research Consortium Meeting Identification of SFD force coefficients Large Clearance Open Ends SFD TRC-SFD-01-2012 Luis San Andrés Mast-Childs Professor May 2012 TRC Project 32513/1519FB Linear Nonlinear Force Coefficients for SFDs 1 SFD with a central groove lubricant film anti-rotation pin shaft journal oil inlet Feed groove ball bearing housing Typical squeeze film damper (SFD) with a central groove Conventional knowledge regards a groove is indifferent to the kinematics of journal motion, thus effectively isolating the adjacent film lands. Pressurized lubricant flows through a central groove to fill the squeeze film lands. Dynamic pressures in the film lands generate reaction forces aiding to damp excessive amplitudes of rotor whirl motion. 2 P&W SFD test rig Isometric view Static loader Shaker assembly (Y direction) Shaker assembly (X direction) Top view Static loader Shaker in Y direction Shaker in X direction SFD test bearing 3 Test rig description shaker Y Static loader Static loader shaker X Shaker Y Shaker X Y X SFD SFD Static loader Y Y support rods Support rods base Base X X 4 SFD Test Rig – cut section Test rig main features Piston ring seal (location) Test Journal Bearing Cartridge Supply orifices (3) Journal diameter: 5.0 inch Film clearance: 9.9 mil Film length: 2 x 1 inch Support stiffness: 100 klbf/in Circumferential groove Flexural Rod (4, 8, 12) Main support rod (4) Journal Base Pedestal in 5 Lubricant flow path Oil inlet in ISO VG 2 oil 6 Objective & tasks Evaluate dynamic load performance of SFD with a central groove. Dynamic load measurements: circular orbits (centered and off centered) and identification of test system and SFD force coefficients Y Y static load e eS 45o X X r c centered and offcentered circular orbits 7 Structure static stiffness •Pull test using static loader to determine static structure stiffness static radial load (lbf) F Y 1335 300 X 200 890 100 445 K S ~ 100 klbf/in 0 0 0.5 1 1.5 2 2.5 static radial eccentricity, 3 e S(mil) 3.5 4 (101.6 μm) 8 static radial load (N) 1780 400 Structural parameters • Dry test system • Circular Centered Orbits • Frequency 50-210 Hz Direct XX YY US SI US SI Stiffness Ks 107 klbf/in 19 MN/m 120 klbf/in 21 MN/m Damping Cs 8 lbf-s/in 1.4 kN-s/m 9 lbf-s/in 1.6kN-s/m Mass M -4 lb -2 kg -3 lb -1 kg System Mass MBC 48 lb 22 kg 48 lb 22 kg Natural frequency fns 148Hz 156Hz Damping ratio ξs 4% 4% 9 SFD dimensions & operating conds. • Maximum static load 324 lbf • Centered and off-centered, eS= 1, 2, and 3 mil • Frequency range: 50-210 Hz, Orbit amplitude r = 0.5 mil ISO VG 2 Oil Oil in, Qin Viscosity at 73 oF [cPoise] 3.10 Density [kg/m3] 785 Inlet pressure [psig] 1.6 Outlet pressure [psig] 0 Radial Clearance [mil] 9.9 Journal Diameter [inch] 5.0 Central groove length [inch] & depth 0.500 0.375 Land length, L [inch] 1.0 x 2 Total Length [inch] 2.5 Journal (D) Oil out, Qt End groove Central groove c L ½L L Bearing Cartridge End groove Oil out, Qb Oil collector Oil out Base Support rod 10 SFD force coefficients Y IVFM parameter identification method 45o c SFD Difference between lubricated system and dry system (baseline) coefficients CSFD=Clubricated - Cs MSFD=Mlubricated - MBC es X DRY system parameters Ks = 100 klbf/in MBC = 48 lb Cs= 8-9 lbf-s/in Nat freq = 148-156 Hz Damping ratio = 4% KSFD=Klubricated - Ks 11 SFD force coefficients - theory Centered journal (es=0), no lubricant cavitation Two film lands separated by a plenum: central groove has no effect on squeeze film forces. tanh L R D * CYY 2 12 π L 1 L c D 3 Damping Inertia * C * C XX * * M * M XX M YY L π LR3 tanh D 2 1 L c D Y Stiffness KXX = KYY = KXY=KYX=0 X 12 SFD force coefficients - theory Damping C C * * XX 3 L R tanh D C 2 12 π L 1 L c D * YY c=5.5 mil C* = 7,121 N.s/m (40.7 lbf.s/in) c=9.9 mil C* = 1,255 N.s/m (7.16 lbf.s/in) Inertia Y X * * M * M XX M YY L π LR3 tanh D 2 1 L c D c=5.5 mil M* = 2.98 kg (6.58 lbm) c=9.9 mil M* = 1.67 kg (3.69 lbm) 13 Experimental SFD damping coeffs. • Open ends SFD • Circular orbits (r = 0.5 mil) Y 45o c es X Damping coefficients (lb f-s/in) SFD (1 inch land lengths) 31.5 kNs/m 180 160 C SFD C YY c=5.5 mil 140 120 C XX c=5.5 mil 100 80 60 classical theory (40.6 lbf.s/in) C YY c=9.9 mil 40 20 classical theory (7.1 lbf.s/in) 0 0.0 0.5 1.0 1.5 C XX c=9.9 mil 2.0 2.5 3.0 3.5 (89 μm) static eccentricity, e S (mil) 14 Experimental SFD inertia coeffis. Y • Open ends SFDs • Circular orbits (r = 0.5 mil) 45o c Added mass coefficients (lb) SFD (1 inch land lengths) es 80 X 36 kg M SFD 70 M XX c= 5.5 mil 60 M YY c= 5.5mil 50 40 M YY c= 9.9 mil 30 20 M XX c= 9.9 mil 10 classical theory (3.7 - 6.6 lb) 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 89 μm static eccentricity, e S (mil) 15 Pressure sensors in bearing Pressure sensor locations Top view: Sensors around bearing circumference and Pressure sensor 25.4 mm 12.7 mm Top Land Pressure sensor Central groove Bottom Land 25.4 mm , and 63.5 mm Pressure sensor Central groove Side view: Sensors located at middle plane of film lands BC 16 Dynamic pressures: films & groove Whirl frequency 130 Hz Pressures film lands filmatlands psi10 pressure (psi) ASME GT2012-68212 0.69 bar 5 0 0 5 10 -0.69 bar 0 1 2 3 Top and bottom film lands show similar pressures. 4 time (-) of periods Number top land (120 deg) bottom land (120 deg) Pressuresgroove at central groove pressure (psi) psi 4 0.28 bar 2 0 0 2 4 0 1 2 3 4 Dynamic pressure in the groove is not zero! -0.28 bar Number time (-)of periods groove (165 deg) groove (285 deg) 17 es=0, circular orbit r=0.5 mil. Groove pressure PG = 0.72 bar P-P pressure (psi) P-P dynamic pressure (psi) Peak-peak lubricant pressures Piezoelectric pressure sensors (PCB) location peak-peak pressures 207 (kPa) 30 30 2020 Top land (120) Top land (240) Bottom land (120) Bottom land (240) Groove (165) Groove (285) Bearing Cartridge Lands (top & bottom) groove top land bottom land 1010 groove 000 100 100 frequency (Hz) c=5.5 mil Frequency (Hz) 200 200 Midplane 18 pressure (psi) P-P dynamic P-P pressure (psi) Peak-peak lubricant pressures Piezoelectric pressure sensors (PCB) location peak-peak pressures 1515 Top land (120) Top land (240) Bottom land (120) Bottom land (240) Groove (165) Groove (285) 1010 Bearing Cartridge groove groove top land bottom land 55 lands 00 (top & bottom) 0 100 100 frequency (Hz) c=9.9 mil Frequency (Hz) 200 200 Midplane 19 Ratio of groove/film land pressures peak-peak pressures Top land (120) Top land (240) Groove generates large hydrodyna mic pressures! groove lands (top) 3 P-P pressure (psi) P-P pressure ratios 4 2 1 0 00 1.0 100 100 200 200 frequency (Hz) c=5.5 mil 3/8”~70 c Frequency (Hz) 1“ 0.5” 1” 20 Ratio of groove/film land pressures peak-peak pressures Top land (120) Top land (240) groove lands (top) 3 P-P pressure (psi) P-P pressure ratios 4 2 1 0 1.0 0 100 100 Groove generates larger hydrodyna mic pressures!! Larger than in the film! 200 200 frequency (Hz) c=9.9 mil Frequency (Hz) 3/8”~35 c 1“ 0.5” 1” 21 Model SFD with a central groove SFD geometry and nomenclature Lubricant in Use effective depth d=1.6c Bearing orifice Lubricant in do dG groove L c : clearance LG film land recirculation zone End seal Lubricant out separation line streamline d Journal z D, diameter Effective groove depth Lubricant out Solve modified Reynolds equation (with fluid inertia) 3 P h R R 2 3 P h h 2 h h 12 2 z z t t 22 Example predicted pressure field Feed hole (3 x 120 deg) groove groove 0.60 0.5-0.6 0.4-0.5 0.50 0.3-0.4 0.2-0.3 0.1-0.2 0.40 0.0-0.1 0.30 land z 81 89 axial coordi nate S8 49 57 65 0.00 73 17 25 33 0.10 41 9 1 0.20 S1 Inner Film Pressure Pressure (bar) Static pressure at groove shows circumferenti al variation due to feed holes spacing circ coordinate (node #) 1“ 3/8”~35 c 0.5” 1” 23 Damping coefficients: test & predictions Damping coefficients (lb f-s/in) Model predicts 200 180 CSFD lines : predictions CYY c=5.5 mil 160 symbols: test data 140 large c SFD: less damping than test values CXX c=5.5 mil 120 100 small c SFD: larger damping coefficient than test values CXX c=9.9 mil 80 60 CYY c=9.9 mil classical theory (40.6 lbf.s/in) 40 20 classical theory (7.1 lbf.s/in) 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 static eccentricity, e S (mil) 24 Inertia coefficients: test & predictions Added mass coefficients (lb) Model predicts 80 70 MSFD small c SFD: less inertia than test values lines : predictions MXX c=5.5 mil MYY c=5.5mil 60 symbols: test data Large c SFD: larger inertia than test values 50 40 MYY c=9.9 mil 30 20 Classical theory predicts ~ 1/7 of test values MXX c=9.9 mil 10 classical theory (3.7 - 6.6 lb) 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 static eccentricity, e S (mil) 25 Conclusions Conducted measurements of dynamic load response in large clearance (c=9.9 mil) open ends SFD with circular orbits, centered and off-centered. • Central grove is NOT a zone of constant pressure: dynamic pressures as large as in film lands. • Classical theory predicts too low SFD added masses: 1/7 of test values •Using an effective shallow groove depth, new model predictions agree well with test results. 26 P&W funded project (2012) Modify test rig and construct SFD w/o a central groove, conduct measurements of film pressures and identify force coefficients. 27 Proposed tasks TRC (2012-13) 1. Test damper w/o groove with dynamic loads (20-300 Hz) inducing offcentered elliptical orbital motions to reach 0.8c. 2. Identify SFD force coefficients from test impedances, and correlate coefficients with linear force coefficients and experimental coefficients for smallest whirl amplitude (0.05c). 3. Perform numerical experiments, similar to the physical tests, to extract linearized SFD force coefficients from the nonlinear forces. Quantify goodness of linear-nonlinear representation from an equivalence in mechanical energy dissipation. Y centered journal X circular orbits Y Y off-centered journal X X elliptical orbits 28 TRC Budget (2012-13) eight months Year II Support for graduate student (20 h/week) x $ 2,200 x 8 months $ 17,600 Fringe benefits (0.6%) and medical insurance ($197/month) $ 1,682 Travel to (US) technical conference $ 1,200 Tuition three semesters ($227 credit hour x 15 ch x 1.7 fees multiplicative factor) $ 5,789 Supplies for test rig $ Total Cost: Year I started on Jan 2012 Y centered journal X circular orbits 2,200 $ 28,470 Y Y off-centered journal X X elliptical orbits 29 Acknowledgments Thanks to • Pratt & Whitney Engines • Turbomachinery Research Consortium • Sung-Hwa Jeng, RA for making the presentation Learn more http:/rotorlab.tamu.edu Questions (?) 30