Supercomputing on Windows NT Clusters: Experience and

Download Report

Transcript Supercomputing on Windows NT Clusters: Experience and

Supercomputing on Windows
Clusters:
Experience and Future Directions
Andrew A. Chien
CTO, Entropia, Inc.
SAIC Chair Professor
Computer Science and Engineering, UCSD
National Computational Science Alliance
Invited Talk, USENIX Windows, August 4, 2000
Overview


Critical Enabling Technologies
The Alliance’s Windows Supercluster
– Design and Performance


Other Windows Cluster Efforts
Future
– Terascale Clusters
– Entropia
Entropia, Inc -- University of California, San Diego (UCSD/CSE) -- NCSA
External Technology Factors
Microprocessor Performance
MIPS R2000 (125)
Clock (ns)
100
Microprocessors
MIPS R3000 (40)
10
HP 7000 (15)
R4000 (10)
Cray 1S (12.5)
R4400 (6.7)
Cray X-MP (8.5)
Cray Y-MP (6)
Cray C90 (4.2)
DEC Alpha (5)
1
Vector supercomputers
1975


1980
1985
X86/Alpha
(1)
1990
1995
Year
Introduced
Micros: 10MF -> 100 MF -> 1GF -> 3GF -> 6GF (2001?)
=> Memory system performance catching up (2.6 GB/s 21264 memory
BW)
Entropia, Inc -- University of California, San Diego (UCSD/CSE) -- NCSA
Adapted from Baskett, SGI and CSC Vanguard
Killer Networks
GigSAN/GigE: 110 MB/s


LAN: 10Mb/s -> 100Mb/s -> ?
SAN: 12MB/s -> 110MB/s
(Gbps) -> 1100MB/s -> ?
– Myricom, Compaq, Giganet, Intel,...

UW Scsi: 40 MB/s

FastE: 12 MB/s
Ethernet 1MB/s
Network bandwidths limited by
system internal memory
bandwidths
Cheap and very fast
communication hardware
Entropia, Inc -- University of California, San Diego (UCSD/CSE) -- NCSA
Rich Desktop Operating Systems
Environments
HD Storage
Networks
Graphical Interfaces
Audio/Graphics
Clustering, Performance,
Mass store, HP networking,
Multiprocess Protection
Management, Availability, etc.
SMP support
Basic device
access
1981

1985
1990
1995
1999
Desktop (PC) operating systems now provide
–
–
–
–
richest OS functionality
best program development tools
broadest peripheral/driver support
broadest application software/ISV support
Entropia, Inc -- University of California, San Diego (UCSD/CSE) -- NCSA
Critical Enabling Technologies
Critical Enabling Technologies


Cluster management and resource
integration (“use like” one system)
Delivered communication performance
– IP protocols inappropriate

Balanced systems
– Memory bandwidth
– I/O capability
Entropia, Inc -- University of California, San Diego (UCSD/CSE) -- NCSA
The HPVM System

Goals
– Enable tightly coupled and distributed clusters with high efficiency
and low effort (integrated solution)
– Provide usable access thru convenient standard parallel interfaces
– Deliver highest possible performance and simple programming
model
Entropia, Inc -- University of California, San Diego (UCSD/CSE) -- NCSA
Delivered Communication
Performance

Early 1990’s, Gigabit testbeds
– 500Mbits (~60MB/s) @ 1 MegaByte packets
– IP protocols not for Gigabit SAN’s


Cluster Objective: High performance
communication to small and large messages
Performance Balance Shift: Networks faster
than I/O, memory, processor
Entropia, Inc -- University of California, San Diego (UCSD/CSE) -- NCSA
Fast Messages Design Elements


User-level network access
Lightweight protocols
– flow control, reliable delivery
– tightly-coupled link, buffer, and I/O bus management

Poll-based notification
Streaming API for efficient composition

Many generations 1994-1999

– [IEEE Concurrency, 6/97]
– [Supercomputing ’95, 12/95]

Related efforts: UCB AM, Cornell U-Net,RWCP PM,
Princeton VMMC/Shrimp, Lyon BIP => VIA standard
Entropia, Inc -- University of California, San Diego (UCSD/CSE) -- NCSA
Improved Bandwidth
Performance (megabytes/sec)
250
200
150
MB/s
100
50
0
1995

1996
1997
1998
1999
20MB/s -> 200+ MB/s (10x)
– Much of advance is software structure: API’s and implementation
– Deliver *all* of the underlying hardware performance
Entropia, Inc -- University of California, San Diego (UCSD/CSE) -- NCSA
Improved Latency
25
1-way latency
20
15
microseconds
10
5
0
1995

1996
1997
1998
1999
100ms to 2ms overhead (50x)
– Careful design to minimize overhead while maintaining throughput
– Efficient event handling, fine-grained resource management and
interlayer coordination
– Deliver *all* of the underlying hardware performance
Entropia, Inc -- University of California, San Diego (UCSD/CSE) -- NCSA
HPVM = Cluster Supercomputers
MPI
Put/Get
Global
Arrays
BSP
Scheduling
& Mgmt (LSF)
Fast Messages
Myrinet



Server- Giganet
Net
VIA
SMP
WAN
Performance
Tools
HPVM 1.0 (8/1997)
HPVM 1.2 (2/1999)
- multi, dynamic,
install
HPVM 1.9 (8/1999)
- giganet, smp
Turnkey Cluster Computing; Standard API’s
Network hardware and API’s increase leverage for
users, achieve critical mass for system
Each involved new research challenges and provided
deeper insights into the research issues
– Drove continually better solutions (e.g. multi-transport
integration, robust flow control and queue management)
Entropia, Inc -- University of California, San Diego (UCSD/CSE) -- NCSA
HPVM Communication Performance
120
100
MB/s
80
FM on Myrinet
MPI on FM-Myrinet
60
40
• N1/2 ~ 400 Bytes
20
16128
15232
14336
13440
12544
11648
10752
9856
8960
8064
7168
6272
5376
4480
3584
2688
512
4
0
message size (bytes)


Delivers underlying performance for small messages, endpoints
are the limits
100MB/s at 1K vs 60MB/s at 1000K
– >1500x improvement
Entropia, Inc -- University of California, San Diego (UCSD/CSE) -- NCSA
HPVM/FM on VIA
90
80
70
MB/s
60
50
FM on Giganet VIA
MPI-FM on Giganet VIA
40
30
• N1/2 ~ 400 Bytes
20
10
4
10
24
29
44
39
68
49
92
60
16
70
40
80
64
90
8
10 8
11
11 2
13
12 6
16
13 0
18
14 4
20
15 8
23
16 2
25
6
0
message size (bytes)



FM Protocol/techniques portable to Giganet VIA
Slightly lower performance, comparable N1/2
Commercial version: WSDI (stay tuned)
Entropia, Inc -- University of California, San Diego (UCSD/CSE) -- NCSA
Unified Transfer and Notification
(all transports)
<space>
Procs
Variable Size
Data
Fixed Size
Frames
Increasing
Addresses
Networks
Fixed Size Trailer
+ Length/Flag



Solution: Uniform notify and poll (single Q representation)
Scalability: n into k (hash); arbitrary SMP size or number of NIC cards
Key: integrate variable-sized messages; achieve single DMA transfer
– no pointer-based memory management, no special synchronization
primitives, no complex computation

Memory format provides atomic notification in single contiguous
memory transfer (bcopy or DMA)
Entropia, Inc -- University of California, San Diego (UCSD/CSE) -- NCSA
Integrated Notification Results
Single Transport
Myrinet (latency)
8.3ms
Myrinet (BW)
101MB/s
Shared Memory (latency) 3.4ms
Shared Memory (BW)
200+MB/s


Integrated
8.4ms
101MB/s
3.5ms
200+MB/s
No polling or discontiguous access performance penalties
Uniform high performance which is stable over changes of
configuration or the addition of new transports
– no custom tuning for configuration required

Framework is scalable to large numbers of SMP processors and
network interfaces
Entropia, Inc -- University of California, San Diego (UCSD/CSE) -- NCSA
Supercomputer Performance
Characteristics (11/99)
Cray T3E
MF/Proc Flops/Byte Flops/NetworkRT
1200
~2
~2,500
SGI Origin2000
500
~0.5
~1,000
HPVM NT Supercluster 600
~8
~12,000
IBM SP2 (4 or 8-way)
2.6-5.2GF
~12-25
~150-300K
Beowulf(100Mbit)
600
~50
~200,000
Entropia, Inc -- University of California, San Diego (UCSD/CSE) -- NCSA
Windows
The NT Supercluster
Windows Clusters

Early prototypes in CSAG
– 1/1997, 30P, 6GF
– 12/1997, 64P, 20GF

Alliance’s Supercluster
– 4/1998, 256P, 77GF
– 6/1999, 256P*, 109GF
Entropia, Inc -- University of California, San Diego (UCSD/CSE) -- NCSA
NCSA’s Windows Supercluster
AS-PCG MPI Performance - 2D Navie
Engineering Fluid Flow Problem
128 HP Kayak XU
Dual PIII 550 MHz/1GB RAM
20
18
16
Origin
GFLOPs
14
12
550 MHz
10
8
6
4
Using NT, Myrinet Interconnect, and HPVM
300 MHz
2
SGI O2000,
NT Cluster: I
NT Cluster: I
Cluster: 128
0
#207 in Top 500
Supercomputing Sites
0
32
64
D. Tafti, NCSA
Rob Pennington (NCSA), Andrew Chien (UCSD)
96
128
16
Processors
Windows Cluster System
Front-End Systems
File servers
LSF master
Fast Ethernet
Internet
•Apps development
•Job submission
LSF Batch
Job Scheduler
FTP to Mass Storage
Daily backups
128 GB Home
200 GB Scratch
128 Compute Nodes, 256 CPUs
Windows NT, Myrinet and HPVM
128 Dual 550 MHz Systems
Infrastructure and Development Testbeds
Windows 2K and NT
8 4p 550 + 32 2p 300 + 8 2p 333
(courtesy Rob Pennington, NCSA)
Example Application Results





MILC – QCD
Navier-Stokes Kernel
Zeus-MP – Astrophysics CFD
Large-scale Science and Engineering
codes
Comparisons to SGI O2K and Linux
clusters
Entropia, Inc -- University of California, San Diego (UCSD/CSE) -- NCSA
MILC Performance
12
IA-32/Win NT, 300 MHz PII
250 MHz SGI O2K
T3E 900
IA-32/Win NT 550MHz Xeon
10
GFLOPs
8
6
4
2
0
0
50
100
Processors
Entropia,
Inc -- University of California, San Diego (UCSD/CSE) -- NCSA
Src: D. Toussaint and K. Orginos,
Arizona
MFlops/sec
Zeus-MP (Astrophysics CFD)
10000
9000
8000
7000
6000
5000
4000
3000
2000
1000
0
SGI O2K
Janus (ASCI Red)
NT Supercluster
550 Mhz
1
4
16 32 64 96 128 192 256
# procs
Entropia, Inc -- University of California, San Diego (UCSD/CSE) -- NCSA
2D Navier Stokes Kernel
AS-PCG MPI Performance - 2D Navier Stokes Kernel
20
18
128 300 MHz Intel Pentium II +
128 550 MHz Pentium III Xeon
16
GFLOPs
14
12
10
8
6
SGI O2000, 250 MHz R10000
NT Cluster: Intel 550 MHz PIII Xeon HP Kayak
NT Cluster: Intel 300MHz PII HP Kayak
Cluster: 128 550MHz + 128 300 MHz
4
2
0
0
32
64
96
Source: Danesh Tafti, NCSA
160
128
Processors
192
224
256
Entropia, Inc -- University of California, San Diego (UCSD/CSE) -- NCSA
Applications with High Performance
on Windows Supercluster

















Zeus-MP (256P, Mike Norman)
ISIS++ (192P, Robert Clay)
ASPCG (256P, Danesh Tafti)
Cactus (256P, Paul Walker/John Shalf/Ed Seidel)
MILC QCD (256P, Lubos Mitas)
QMC Nanomaterials (128P, Lubos Mitas)
Boeing CFD Test Codes, CFD Overflow (128P, David Levine)
freeHEP (256P, Doug Toussaint)
ARPI3D (256P, weather code, Dan Weber)
GMIN (L. Munro in K. Jordan)
DSMC-MEMS (Ravaioli)
FUN3D with PETSc (Kaushik)
SPRNG (Srinivasan)
MOPAC (McKelvey)
Astrophysical N body codes (Bode)
=> Little code retuning and quickly running ...
Parallel Sorting (Rivera – CSAG), 18.3 GB Minutesort World Record
Entropia, Inc -- University of California, San Diego (UCSD/CSE) -- NCSA
MinuteSort


Sort max data disk-to-disk in 1 minute
“Indy sort”
– fixed size keys, special sorter, and file format

HPVM/Windows Cluster winner for 1999 (10.3GB)
and 2000 (18.3GB)
– Adaptation of Berkeley NOWSort code (Arpaci and
Dusseau)

Commodity configuration ($$ not a metric)
– PC’s, IDE disks, Windows
– HPVM and 1Gbps Myrinet
Entropia, Inc -- University of California, San Diego (UCSD/CSE) -- NCSA
MinuteSort Architecture
Kayak
Netserver
HPVM & 1Gbps Myrinet
Kayak
32 HP Kayaks
3Ware Controllers
4 x 20GB IDE disks
32 HP Netservers
2 x 16GB SCSI disks
Inc -- University of California, San Diego (UCSD/CSE) -- NCSA
(Luis Rivera UIUC, Xianan ZhangEntropia,
UCSD)
Sort Scaling

Concurrent read/bucket-sort/communicate is bottleneck – faster I/O
infrastructure required (bussesEntropia,
and memory,
not
disks)San Diego (UCSD/CSE) -- NCSA
Inc -- University
of California,
MinuteSort Execution Time
Entropia, Inc -- University of California, San Diego (UCSD/CSE) -- NCSA
Reliability

Gossip: “Windows platforms are not reliable”
– Larger systems => intolerably low MTBF

Our Experience: “Nodes don’t crash”
– Application runs of 1000s of hours
– Node failure means an application failure; effectively not a
problem

Hardware
– Short term: Infant mortality (1 month burn-in)
– Long term
• ~1 hardware problem/100 machines/month
• Disks, network interfaces, memory
• No processor or motherboard problems.
Entropia, Inc -- University of California, San Diego (UCSD/CSE) -- NCSA
Windows Cluster Usage
NT Cluster Usage by Number of Processors
May1999 to Jul2000
CPU Hours
500000
400000
300000
200000
100000
0
1 - 31
32 - 63
64 - 256
Number of Processors


Lots of large jobs
Runs up to ~14,000 hours (64p * 9 days)
Entropia, Inc -- University of California, San Diego (UCSD/CSE) -- NCSA
Other Large Windows Clusters



Sandia’s Kudzu Cluster (144 procs, 550 disks, 10/98)
Cornell’s AC3 Velocity Cluster (256 procs, 8/99)
Others (sampled from vendors)
–
–
–
–
–
–
–
–
–
GE Research Labs (16, Scientific)
Boeing (32, Scientific)
PNNL (96, Scientific)
Sandia (32, Scientific)
NCSA (32, Scientific)
Rice University (16, Scientific)
U. of Houston (16, Scientific)
U. of Minnesota (16, Scientific)
Oil & Gas (8,Scientific)
– Merrill Lynch (16, Ecommerce)
– UIT (16, ASP/Ecommerce)
Entropia, Inc -- University of California, San Diego (UCSD/CSE) -- NCSA
The AC3 Velocity
64 Dell PowerEdge 6350 Servers
• Quad Pentium III 500 MHz/2 MB Cache Processors (SMP)
• 4 GB RAM/Node
• 50 GB Disk (RAID 0)/Node
GigaNet Full Interconnect
• 100 MB/Sec Bandwidth between any 2 Nodes
• Very Low Latency
2 Terabytes Dell PowerVault 200S Storage
•
•
•
•
•
2 Dell PowerEdge 6350 Dual Processor File Servers
4 PowerVault 200S Units/File Server
8 36 GB/Disk Drives/PowerVault 200S
Quad Channel SCSI Raid Adapter
180 MB/sec Sustained Throughput/ Server
#381
2 Terabyte PowerVault 130T Tape Library
in Top 500
Supercomputing Sites
• 4 DLT 7000 Tape Drives
• 28 Tape Capacity
(courtesy David A. Lifka, Cornell TC)
Entropia, Inc -- University of California, San Diego (UCSD/CSE) -- NCSA
Recent AC3 Additions
8 Dell PowerEdge 2450 Servers (Serial Nodes)
• Pentium III 600 MHz/512 KB Cache
• 1 GB RAM/Node
• 50 GB Disk (RAID 0)/Node
7 Dell PowerEdge 2450 Servers (First All NT Based AFS Cell)
• Dual Processor Pentium III 600 MHz/512 KB Cache
• 1 GB RAM/Node Fileservers, 512 MB RAM/Node Database
servers
• 1 TB SCSI based RAID 5 Storage
• Cross platform filesystem support
64 Dell PowerEdge 2450 Servers (Protein Folding, Fracture
Analysis)
•
•
•
•
Dual Processor Pentium III 733 Mhz/256 KB Cache
2 GB RAM/Node
27 GB Disk (RAID 0)/Node
Full Giganet Interconnect
3 Intel ES6000 & 1 ES1000 Gigabit switches
• Upgrading our Server Backbone network to Gigabit Ethernet
(courtesy David A. Lifka, Cornell TC)
Entropia, Inc -- University of California, San Diego (UCSD/CSE) -- NCSA
3
AC

Goals
Only commercially supported technology
– Rapid spinup and spinout
– Package technologies for vendors to sell as
integrated systems



=> All of commercial packages were moved
from SP2 to Windows, all users are back and
more!
Users: “I don’t do windows” =>
“I’m agnostic about operating systems, and
just focus on getting my work done.”
Entropia, Inc -- University of California, San Diego (UCSD/CSE) -- NCSA
Protein Folding
The cooperative motion of ion and
water through the gramicidin ion
channel. The effective quasi-article
that permeates through the channel
includes eight water molecules and
the ion. Work of Ron Elber with
Bob Eisenberg, Danuta Rojewska
and Duan Pin.
Reaction path study of lig and diffusion in
leghemoglobin. The ligand is CO (white) and
it is moving from the binding site, the heme
pocket, to the protein exterior. A study by
Weislaw Nowak and Ron Elber.
http://www.tc.cornell.edu/reports/NIH/resource/CompBiologyTools/
(courtesy David A. Lifka, Cornell TC)
Protein Folding Per/Processor Performance
Results on different computers for a protein structures:
Machine
System
CPU
CPU speed
[MHz]
222
compiler
Blue Horizon (SP
San Diego)
Linux cluster
AIX 4
Power3
Linux 2.2
PentiumIII
650
PGF 3.1
59.1
Velocity (CTC)
Win 2000
PentiumIII
Xeon
PentiumIII
500
df v6.1
46.0
Velocity+ (CTC)
Win 2000
733
df v6.1
59.2
CPU speed
[MHz]
222
compiler
Energy evaluations per
second
15.0
xlf
Energy evaluations per
second
44.3
Results on different computers for (a /b or b proteins):
Machine
System
CPU
Blue Horizon (SP
San Diego)
Linux cluster
AIX 4
Power3
Linux 2.2
PentiumIII
650
PGF 3.1
21.0
Velocity (CTC)
Win 2000
500
df v6.1
16.9
Velocity+ (CTC)
Win 2000
PentiumIII
Xeon
PentiumIII
733
df v6.1
22.4
(courtesy David A. Lifka, Cornell TC)
xlf
AC3 Corporate Members
-Air Products and Chemicals
-Candle Corporation
-Compaq Computer Corporation
-Conceptual Reality Presentations
-Dell Computer Corporation
-Etnus, Inc.
-Fluent, Inc.
-Giganet, Inc.
-IBM Corporation
-ILOG, Inc.
-Intel Corporation
-KLA-Tencor Corporation
-Kuck & Associates, Inc.
(courtesy David A. Lifka, Cornell TC)
-Lexis-Nexis
-MathWorks, Inc.
-Microsoft Corporation
-MPI Software Technologies, Inc.
-Numerical Algorithms Group
-Portland Group, Inc.
-Reed Elsevier, Inc.
-Reliable Network Solutions, Inc.
-SAS Institute, Inc.
-Seattle Lab, Inc.
-Visual Numerics, Inc.
-Wolfram Research, Inc.
Entropia, Inc -- University of California, San Diego (UCSD/CSE) -- NCSA
Windows Cluster Summary





Good performance
Lots of Applications
Good reliability
Reasonable Management complexity (TCO)
Future is bright; uses are proliferating!
Entropia, Inc -- University of California, San Diego (UCSD/CSE) -- NCSA
Windows Cluster Resources

NT Supercluster, NCSA
– http://www.ncsa.uiuc.edu/General/CC/ntcluster/
– http://www-csag.ucsd.edu/projects/hpvm.html

AC3 Cluster, TC
– http://www.tc.cornell.edu/UserDoc/Cluster/

University of Southampton
– http://www.windowsclusters.org/


=> application and hardware/software evaluation
=> many of these folks will work with you on
deployment
Entropia, Inc -- University of California, San Diego (UCSD/CSE) -- NCSA
Tools and Technologies for Building
Windows Clusters

Communication Hardware
– Myrinet, http://www.myri.com/
– Giganet, http://www.giganet.com/
– Servernet II, http://www.compaq.com/

Cluster Management and Communication Software
–
–
–
–
–
–

LSF, http://www.platform.com/
Codeine, http://www.gridware.net/
Cluster CoNTroller, MPI, http://www.mpi-softtech.com/
Maui Scheduler http://www.cs.byu.edu/
MPICH, http://www-unix.mcs.anl.gov/mpi/mpich/
PVM, http://www.epm.ornl.gov/pvm/
Microsoft Cluster Info
– Win2000 http://www.microsoft.com/windows2000/
– MSCS,http://www.microsoft.com/ntserver/ntserverenterprise/
exec/overview/clustering.asp
Entropia, Inc -- University of California, San Diego (UCSD/CSE) -- NCSA
Future Directions
Terascale
Entropia
Clusters
A Terascale Cluster
10+ Teraflops in 2000?


NSF currently running a $36M Terascale competition
Budget could buy
? #1 in Top 500 ?
– an Itanium cluster (3000+ processors) Supercomputing Sites
– ~3TB of main memory
– > 1.5Gbps high speed network interconnect
Entropia, Inc -- University of California, San Diego (UCSD/CSE) -- NCSA
Entropia: Beyond Clusters
COTS, SHV enable larger, cheaper, faster
systems
• Supercomputers (MPP’s) to…
• Commodity Clusters (NT Supercluster) to…
• Entropia
•
Internet Computing

Idea: Assemble large numbers of idle PC’s in
people’s homes, offices, into a massive
computational resource
– Enabled by broadband connections, fast microprocessors,
huge PC volumes
Entropia, Inc -- University of California, San Diego (UCSD/CSE) -- NCSA
Unprecedented Power

Entropia network: ~30,000 machines (and growing fast!)
– 100,000, 1Ghz => 100 TeraOp system
– 1,000,000, 1Ghz => 1,000 TeraOp system (1 PetaOp)

IBM ASCI White (12 TeraOp, 8K processors, $110 Million
system)
Entropia, Inc -- University of California, San Diego (UCSD/CSE) -- NCSA
Why Participate: Cause Computing!
People Will Contribute


Millions have demonstrated willingness to
donate their idle cycles
“Great Cause” Computing
– Current: Find ET, Large Primes, Crack DES…
– Next: find cure for cancer, muscular dystrophy, air
and water pollution, …
• understand human genome, ecology, fundamental
properties of matter, economy

Participate in science, medical research,
promoting causes that you care about!
Entropia, Inc -- University of California, San Diego (UCSD/CSE) -- NCSA
Technical Challenges








Heterogeneity (machine, configuration,
network)
Scalability (thousands to millions)
Reliability (turn off, disconnect, fail)
Security (integrity, confidentiality)
Performance
Programming
...
Entropia: harnessing the computational
power of the Internet
Entropia, Inc -- University of California, San Diego (UCSD/CSE) -- NCSA
Entropia is . . .



Power: a network with unprecedented
power and scale
Empower: ordinary people to participate
in solving the great social challenges
and mysteries of our time
Solve: team solving fascinating
technical problems
Entropia, Inc -- University of California, San Diego (UCSD/CSE) -- NCSA
Summary

Windows clusters are powerful, successful
high performance platforms
– Cost effective and excellent performance
– Poised for rapid proliferation

Beyond clusters are Internet computing
systems
– Radical technical challenges, vast and profound
opportunities

For more information see
– HPVM
http://www-csag.ucsd.edu/
– Entropia http://www.entropia.com/
Entropia, Inc -- University of California, San Diego (UCSD/CSE) -- NCSA
Credits

NT Cluster Team Members
– CSAG (UIUC and UCSD Computer Science) – my research
group
– NCSA Leading Edge Site -- Robert Pennington’s team

Talk materials
• NCSA (Rob Pennington, numerous application groups)
• Cornell TC (David Lifka)
• Boeing (David Levine)
• MPISoft (Tony Skjellum)
• Giganet (David Wells)
• Microsoft (Jim Gray)
Entropia, Inc -- University of California, San Diego (UCSD/CSE) -- NCSA
Entropia, Inc -- University of California, San Diego (UCSD/CSE) -- NCSA