Diapositiva 1

Download Report

Transcript Diapositiva 1

SIXTH FRAMEWORK PROGRAMME
[6.1]
[ Sustainable Energy Systems]
The
Pan European NEEDS-TIMES
model
Markus Blesl
First CEEH Energy Externality Workshop
Roskilde, Denmark, February 6, 2008
CEEH Workshop
Roskilde, February 6, 2008
Objective of NEEDS
The ultimate objective of the NEEDS Integrated
Project is to evaluate the full costs and benefits (i.e.
direct + external) of energy policies and of future
energy systems, both at the level of individual
countries and for the enlarged EU as a whole.
From the scientific and technological viewpoint, this
entails major advancements in the current state of
knowledge in the following main areas of:
• Life Cycle Assessment (LCA) of energy technologies
• Monetary valuation of externalities associated to
energy production, transport, conversion and use
• Integration of LCA and externalities information into
policy formulation and scenario building
• Multi-criteria decision analysis (MCDA), which allows
examining the robustness of the proposed
technological solutions in view of stakeholder
CEEH Workshop
preferences.
Roskilde, February 6, 2008
Structure of NEEDS
SOCIO-ECONOMIC & ENVIRONMENTAL SCENARIOS
+ INITIAL TECHNICAL DATA
(RS2a + input from Other Streams)
EXTERNALITIES
(RS1b, RS1c)
TECHNOLOGY
DATABASE
(ALL STREAMS)
LIFE CYCLE
DATA
(RS1a)
COHERENT ENERGY-TECHNOLOGY
& TRADE PATHWAYS (RS2a)
OTHER INDICATORS,
SOCIAL ACCEPTANCE, MCDA (RS2b)
CEEH Workshop
Source: Richard Loulou Roskilde,
3rd Integration
February 6, 2008 Meeting
Objectives of the Modeling part in
NEEDS
To generate via The Integrated MARKAL- EFOM
System (TIMES) partial equilibrium technology rich
economic models of each Member State and of
the EU as a whole (Pan-European model),
including the most important emissions, materials,
and damage functions used by LCA and ExternE,
in their long term development.
To compare scenarios that simulate various
policy approaches (setting thresholds for CO2
emission, renewables penetration, etc.) using the
key base data received form the other streams to
calculate equilibrium quantities and prices.
CEEH Workshop
Roskilde, February 6, 2008
ETSAP
IEA (International Energy Agency)
Implementing Agreements
Energy Technology Systems Analysis Programme (ETSAP)
Implementing Agreement
Implementing Agreement
Operating Agent
www.etsap.org
Technology oriented analysis of energy system models
with focus on greenhouse gas abatement strategies:
- Analysis of national and multinational strategies
Outreach
- Technology data review
- Model development (MARKAL, TIMES)
CEEH Workshop
Roskilde, February 6, 2008
TOOLS
Development
•
•
•
•
The Integrated MARKAL EFOM
System
By ETSAP
Implementation in GAMS
Model generator
•
•
•
ANSWER,
ABARE
VEDA, GERAD
HALOA, GERAD
Applications (IER)
Methodology
•
•
•
•
Bottom-up Model
Perfect competition
Perfect foresight
Optimisation (LP)
TIMES
Min/Max Objective function
s.t.
Equations, Constraints
Decision Variables <=> Solution
Input parameters
Features
Regions
Elastic demands
Vintaging
Inter-temporal
Load curve
Endogeneous technological
learning
Discrete capacity expansion
•
•
•
•
•
TIMES-BY
TIMES-GES
TIMES-D
TIMES-EE
TIMES-World
Future Features
•
•
•
NLP (experience curves,
macroeconomic linkage)
Stochastic Programming
MCP (Multi-agent model)
CEEH Workshop
Roskilde, February 6, 2008
Basic structure of energy system
models
Cost balance
Energy carrier prices,
Resources availability
Inland
production
Industry
Refinery
Power plant
and
Grid
Commercial
CHP
and
District Heat
Light
Communicatio
n
Import
Transport
Force
Personalkilometres
Gas pipelines
Emissions
balance
space heating
Area
Person
Domestic
Primary Energy
Process
energy
End energy
TonneDemand
kilometres
CEEH Workshop
Roskilde, February 6, 2008
Demand values
Net
productionvalue
Coal
refining
Characterization of the Pan-European
TIMES model
29 region model (EU 25 + Ro, No, CH, IS)
Energy system model
SUPPLY:
reserves, resources, exploration and conversion
Country specific renewable potential and
availability (onshore wind, offshore wind,
geothermal, biomass, biogas, hydro)
Electricity:
public electricity plants, CHP plants and
heating plants
Residential and Commercial: All end use technologies (space
heating, water heating, space cooling and others)
Industry:
Transport:
Energy intensive industry (Iron and steel,
aluminium copper ammonia and chlorine,
cement, glass, lime, pulp and paper), other
industries , autoproducer and boilers
Different transport modes (cars, buses,
motorcycles, trucks, passenger trains, freight
trains), aviation and navigation
Country specific differences for characterisation of new conversion
and end-use technologies
Time horizon 2000-2050
GHG: CO2, CH4, N2O, SF6 /Others pollutants: SO2CEEH
, NO
Workshop
x, CO, NMVOC,
Roskilde, February 6, 2008
PM2.5, PM10
The modelling team of the country models
Institution
Country
CHALMERS
Sw
CIEMAT
E
CRES
GR
Greece, Malta, Cyprus
ECN
NL
The Netherlands, Ireland
ENERO
RO
Romania
IMAA-CNR
I
Italy
Vincenzo Cuomo
INFM
I
Slovenia
Maria Macchiato
JRC
E
Antonio Soria
KANLO
F
Amit Kanudia
KUL
B
Belgium, Luxembourg, France
POLITO
I
UK
PSI
CH
Switzerland
RISOE
DK
Denmark
TTU
EST
Estonia, Lithuania, Latvia
USTUTT
D
VTT
FIN
Member State Model (MSM)
Contact person
Sweden, Norway, Iceland
Erik Ahlgren
Spain, Portugal
Yolanda Lechon
George Giannakidis
Koen Smekens
Anka Mihaela Tuhai
Denise van Regemorter
Evasio Lavagno
Socrates Kypreos
Poul Erik Grohnheit
N.N.
Germany, Austria, Czech R., Hungary, Slovakia, Poland +
Bulgaria
Markus Blesl
Finland
Antti Lehtila
CEEH Workshop
Roskilde, February 6, 2008
Electricity structure in the PANEuropean Model
ELCHIG
ELCHIGG
ELCMED
ELCLOW
EVTRANS_H-M
EVTRANS_H-H
Generation
~ grid cost high
voltage grid
~ grid cost medium
voltage grid plus
H-M transformer
RSDELC
INDELC
COMELC
TRAELC
...
RSDELC00
EVTRANS_M-L
~ grid cost low
voltage grid plus
M-L transformer
~ cost for distribution
according to grid
tariffs of the certain
demand group
Import
INDELC00
Export
COMELC00
TRAELC00
Pump Storage
~ modelling of pump
storage process here
only scematic
Generation
Decentralized
Generation LOW
VOLTAGE
CEEH Workshop
Roskilde, February 6, 2008
The Pan-European TIMES model
- Linking the countries together by
electricity exchange
CEEH Workshop
Roskilde, February 6, 2008
Scenario analysis - The Key Policy
Cases in the NEEDS Project
Today
1. Specification of the Baseline case (BAU)
2. Post-Kyoto climate policy to stabilize CO2e concentrations at
440 ppmv (CO2)
3. Enhancement of endogenous energy resources, (constraining
imports of fossil fuels to foster the use of renewables, efficiency
standards and new nuclear)
+
4. Improve environmental quality by endogenizing externalities
related to local air pollution ( i.e., w/o global externalities)
SENTECH
CEEH Workshop
Roskilde, February 6, 2008
Total CO2 emission in the EU 27
6000
Transport
CO2 Emission in [Mio t]
5000
Households,
commercial,
AGR
4000
Industry
3000
Conversion,
production
2000
1000
0
2000
BAU
2000
CO2
2010
BAU
2010
CO2
2020
BAU
2020
CO2
2030
BAU
2030
CO2
2040
BAU
2040
CO2
2050
BAU
2050
CO2
CEEH Workshop
Roskilde, February 6, 2008
Total final energy consumption [PJ]
Total final energy consumption EU 27
70000
Others
(Methanol,
Hydrogen)
60000
Waste
50000
Renewables
40000
Heat
30000
Electricity
20000
Gas
10000
Petroleum
products
Coal
0
2000
BAU
2000
CO2
2010
BAU
2010
CO2
2020
BAU
2020
CO2
2030
BAU
2030
CO2
2040
BAU
2040
CO2
2050
BAU
2050
CO2
CEEH Workshop
Roskilde, February 6, 2008
Total final energy consumption
industry EU 27
Final energy consumption Industry [PJ]
25000
Others
(Methanol,
Hydrogen)
Waste
20000
Renewable
15000
Heat
Electricity
10000
Gas
5000
Petroleum
products
0
Coal
2000 2000 2010 2010 2020 2020 2030 2030 2040 2040 2050 2050
BAU CO2 BAU CO2 BAU CO2 BAU CO2 BAU CO2 BAU CO2
CEEH Workshop
Roskilde, February 6, 2008
Total final energy consumption
transport EU27
Final energy consumption Transport [PJ]
20000
Others
(Methanol,
Hydrogen, D
18000
16000
Waste
14000
Renewable
12000
Heat
10000
Electricity
8000
6000
Gas
4000
Petroleum
products
2000
Coal
0
2000 2000 2010 2010 2020 2020 2030 2030 2040 2040 2050 2050
BAU CO2 BAU CO2 BAU CO2 BAU CO2 BAU CO2
BAU CO2
CEEH Workshop
Roskilde, February 6, 2008
Total final energy consumption
residential EU27
Final energy consumption Residential [PJ]
16000
Others
(Methanol,
Hydrogen, DM
14000
Waste
12000
Renewables
10000
Heat
8000
Electricity
6000
4000
Gas
2000
Petroleum
products
0
Coal
2000 2000 2010 2010 2020 2020 2030 2030 2040 2040 2050 2050
BAU CO2 BAU CO2 BAU CO2 BAU CO2 BAU CO2 CEEH
BAU
CO2
Workshop
Roskilde, February 6, 2008
Net electricity generation in TWh
7000
Net electricity [TWh]
Others
6000
Solar
photovolta
5000
Wind
Hydro
4000
Nuclear
3000
Natural ga
2000
Oil
1000
Lignite
Coal
0
2000 2000 2010 2010 2020 2020 2030 2030 2040 2040 2050 2050
BAU CO2 BAU CO2 BAU CO2 BAU CO2 BAU CO2 BAU CO2
CEEH Workshop
Roskilde, February 6, 2008
Net
electricity
generation
in
TWh
7000
Others
Solar
5000
Wind
4000
Hydro
Nuclear
3000
Natural gas
2000
Oil
1000
Lignite
2000
2010
2020
2030
2040
CO2 SEN
CO2
BAU
CO2 SEN
CO2
BAU
CO2 SEN
CO2
BAU
CO2 SEN
CO2
BAU
CO2 SEN
CO2
BAU
CO2 SEN
CO2
0
BAU
Net electricity [TWh]
6000
2050
CEEH Workshop
Roskilde, February 6, 2008
Coal
Net electricity capacity [GW]
Net electricity generation capacity in
[GW]
1600
Others
1400
Solar
photovoltaic
1200
Wind
1000
Hydro
800
Nuclear
600
Natural gas
Oil
400
Lignite
200
Coal
0
2000
BAU
2000
CO2
2010
BAU
2010
CO2
2020
BAU
2020
CO2
2030
BAU
2030
CO2
2040
BAU
2040
CO2
2050 2050
CEEH Workshop
BAU
Roskilde, CO2
February 6, 2008
Net electricity generation capacity in
[GW]
1600
Others
1400
Solar
1200
Wind
1000
Hydro
800
Nuclear
600
Natural ga
400
Oil
200
Lignite
2000
2010
2020
2030
2040
CO2 SEN
CO2
BAU
CO2 SEN
CO2
BAU
CO2 SEN
CO2
BAU
CO2 SEN
CO2
BAU
CO2 SEN
CO2
BAU
CO2 SEN
CO2
0
BAU
Net electricity capacity [GW]
1800
2050
CEEH Workshop
Roskilde, February 6, 2008
Coal
Net electricity generation capacity by
technologies in [GW]
1600000
1400000
Installed capacity in [MW]
1200000
1000000
800000
600000
400000
200000
0
2000
BAU
2000
CO2
2010
BAU
2010
CO2
2020
BAU
2020
CO2
2030
BAU
2030
CO2
2040
BAU
2040
CO2
2050
BAU
2050
CO2
Fuel Cell
Wave
Tidal
Hot Dry Rock
Steam Turbine
Thermal
Photovoltaics
Offshore
Onshore
Pump Storage
Dam Storage
Run of river
Fuel Cell
Internal Combustion
Combined Cycle
Gas Turbine
Steam Turbine
IGCC
Steam Turbine
Generation 4
Generation 2 and 3
Fuel Cell
Internal Combustion
Combined Cycle CO2 S
Combined Cycle
Gas Turbine
Steam Turbine
Internal Combustion
Combined Cycle
Gas Turbine
Steam Turbine
IGCC CO2 Seq.
IGCC
Steam Turbine CO2 Seq
Steam Turbine
IGCC CO2 Seq.
IGCC
Steam Turbine CO2 Seq
Steam Turbine
CEEH Workshop
Roskilde, February 6, 2008
Total primary energy consumption EU
Primary Energy Consumption [PJ]
100000
90000
Electricity
import
80000
Waste
70000
Other
renewables
60000
Hydro, wind,
photovoltaic
50000
Nuclear
40000
Natural gas
30000
Oil
20000
10000
Lignite
0
2000
BAU
2000
CO2
2010
BAU
2010
CO2
2020
BAU
2020
CO2
2030
BAU
2030
CO2
2040
BAU
2040
CO2
2050
BAU
2050
CO2
Coal
CEEH Workshop
Roskilde, February 6, 2008
Integration of LCA and External costs
in the Pan-European TIMES model
Cost balance
Energy carrier prices,
Resources availability
Inland
production
Industry
Process
energy
Refinery
Power plant
and
Grid
Commercial
space
heating
Area
Domestic
Person
CHP
and
District Heat
Light
Transport
Import
Force
Gas pipelines
Primary Energy
Emissions
balance
Communicati
on
End energy
Personalkilometres
Demand
Tonne-
CEEH Workshop
kilometres
Roskilde, February 6, 2008
Demand values
Net
productionvalue
Coal
refining
Thank you for your attention !
CEEH Workshop
Roskilde, February 6, 2008